Giả sử x ; y là các số dương thỏa mãn đẳng thức \(x+y=\sqrt{10}\). Tìm giá trị của x và y để biểu thức
\(P=\left(x^4+1\right)\left(y^4+1\right)\)đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất ấy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(x\ge1\)
<=> \(2x^2-4x+18=6\sqrt{x-1}+6\sqrt[3]{2x+4}\)
<=> \(2\left(x-2\right)^2+3\left(x-2\sqrt{x-1}\right)+\left(x+10-6\sqrt[3]{2x+4}\right)=0\)
<=> \(2\left(x-2\right)^2+\frac{3\left(x^2-4x+4\right)}{x+2\sqrt{x-1}}+\frac{x^3+30x^2-132x+136}{\left(10+x\right)^2+6\left(10+x\right)\sqrt[3]{2x+4}+\sqrt[3]{\left(2x+4\right)^2}}=0\)
<=> \(2\left(x-2\right)^2+\frac{3\left(x-2\right)^2}{x+2\sqrt{x-1}}+\frac{\left(x+34\right)\left(x-2\right)^2}{MS}=0\)
<=> \(\orbr{\begin{cases}x=2\\2+\frac{3}{x+2\sqrt{x-1}}+\frac{34+x}{MS}=0\left(2\right)\end{cases}}\)
PT (2) vô nghiệm Với \(x\ge1\)
Vậy x=2
Bài 1 :
\(c,\sqrt{15}.\sqrt{17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}.\)
\(16=\sqrt{16^2}\)\(\Leftrightarrow16>\sqrt{15}.\sqrt{17}\)
Câu d coi lại đề giùm :>
Bài 2 :
\(a,\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{7}}{2\sqrt{3}+2\sqrt{7}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)
\(b,\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\sqrt{2}+1\)
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
\(\sqrt{x^2-6x+13}=0\)
\(\Leftrightarrow x^2-6x+13=0\)
\(\Leftrightarrow x^2-6x+9+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+4=0\)
Mà: \(\left(x+3\right)^2+4\ge4>0\forall x\)
=> Không có giá trị của x thỏa mãn
\(\sqrt{x^2+4}=x+2\)
\(\Leftrightarrow\hept{\begin{cases}x^2+4=\left(x+2\right)^2\\x+2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+4=x^2+4x+4\\x>-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x>-2\end{cases}}\)
Vậy: PT có tập nghiệm S = { 0 }
=.= hk tốt!!
Lời giải :
a) \(\sqrt{x-1}=3\)
\(\Leftrightarrow\left|x-1\right|=9\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\left(chon\right)\\x=-8\left(loai\right)\end{cases}}}\)
b) \(\sqrt{x^2+x+1}=1\)
\(\Leftrightarrow x^2+x+1=1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)( thỏa )
c) \(\sqrt{x}=\sqrt{3}\)
\(\Leftrightarrow\left|x\right|=3\)
\(\Leftrightarrow x=3\)( thỏa )
d) \(\sqrt{x^2+1}=-3\)
Vì \(\sqrt{x^2+1}>0\forall x\)
Do đó pt vô nghiệm
A B C D K 1 2 1 2 H
a)
Xét tam giác vuông CIH và tam giác vuông CBK có:
có góc C chung
=> \(\Delta CIH~\Delta CBK\)( góc -góc)
=> \(\frac{CI}{CB}=\frac{CH}{CK}\Rightarrow CI.CK=CB.CH\) (1)
Mặt khác: Xét tam giác ABC vuoonh tại A và có đường cao AH
=> \(AC^2=CH.CB\)( hệ thức lượng trong tam giác vuông) (2)
Từ (1) và (2) => \(CI.CK=CA^2\)
b) Do D đối xứng với A qua H
=> HA=HD mà AH vuông BC
=> BC là đường trung trực AD
=> AB=DB, AC= DC
Xét tam giác CAB và Tam giác CDB có: BC chung, AB=BD, AC=DC
=> \(\Delta CAB=\Delta CDB\) ( c-c-c)
=> \(\widehat{B_1}=\widehat{B_2}\)(3)
và \(\widehat{CDB}=\widehat{CAB}=90^o\) ( các góc tương ứng bằng nhau)
Xét tứ giác CAKB có: \(\widehat{CAB}=\widehat{CKB}=90^o\)
=> TỨ giác CAKB nội tiếp ( vì có hai góc nội tiếp chắn một cung bằng nhau)
=> \(\widehat{B_1}=\widehat{K_1}\)(4)
Xét tứ giác CKBD có: \(\widehat{CDB}+\widehat{CKB}=90^o+90^o=180^o\)
=> Tứ giác CKBD nội tiếp ( vì có tổng hai góc đối bằng 180^o)
=> \(\widehat{B_2}=\widehat{K_2}\)(5)
Từ (3), (4), (5)
=> \(\widehat{K_2}=\widehat{K_1}\)
=> KC là phân giác góc AKD
\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)
Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)
\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)
\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)
\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi xy=2
Lại có \(x+y=\sqrt{10}\)
\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)
\(\Rightarrow y^2-\sqrt{10y}+2=0\)
Ta có \(\Delta=10-8=2\)
\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)