a , \(\frac{x+1}{46}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+4}{96}\)
Các bạn giúp mik bài này với !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x< \frac{2}{3}+\frac{3}{4}\)
\(\Rightarrow x< \frac{17}{12}\)
LÀm được ròi :>>
Ta có :
A = 12345................100101
=> Tổng các chữ số của A là :
19 . 1 = 19 . 2 + 19 . 3 + ... + 19 . 9 + 1 + 0 + 0 + 1 + 0 + 1
= 19 . ( 1 + 2 + 3 + ... + 9 ) + 3
= 19 . ( 9 + 1 ) . 9 : 2 + 3
= 19 . 45 + 3
= 3 . ( 19 . 15 + 1 ) ⋮ 3
Mà 1 < 3 < A => A là hợp số
ta có :
\(2^{2^{2005}}=2^{2^{2004}.2}=4^{2^{2004}}\equiv1mod3\)
nên : \(2^{2^{2005}}+5\text{ chia hết cho 3}\)
nên số đã cho là hợp số
Phương pháp giải - Xem chi tiết
+) Sử dụng tính chất: Nếu a,b,c∈Za,b,c∈Z và a<ba<b thì a+c<b+c.a+c<b+c.
Lời giải chi tiết
Theo đề bài ta có x=amx=am; y=bmy=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0)
Vì x<yx<y nên ta suy ra a<b.a<b.
Ta có : x=2a2mx=2a2m, y=2b2my=2b2m;z=a+b2mz=a+b2m
Vì a<b⇒a+a<a+b⇒2a<a+b.a<b⇒a+a<a+b⇒2a<a+b.
Do 2a<a+b2a<a+b nên x<z(1)x<z(1)
Vì a<b⇒a+b<b+b⇒a+b<2b.a<b⇒a+b<b+b⇒a+b<2b.
Do a+b<2ba+b<2b nên z<y(2)z<y(2)
Từ (1) và (2) ta suy ra x<z<y.
Bài làm:
Ta có: x=am,y=bmx=am,y=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0) và x<yx<y
⇒a<b⇒a<b
⇒a+a<a+b⇔2a<a+b⇒a+a<a+b⇔2a<a+b
Cũng do a<b⇒a+b<b+b⇔a+b<2ba<b⇒a+b<b+b⇔a+b<2b
Từ hai điều trên suy ra 2a<a+b<2b2a<a+b<2b
Mà x=2a2m,y=2b2m,z=a+b2mx=2a2m,y=2b2m,z=a+b2m (m>0)(m>0)
⇒2a2m<a+b2m<2b2m⇒2a2m<a+b2m<2b2m
Vậy x<z<yx<z<y (đpcm).
Cách của chj mik nha :
Theo đề bài ta có x =
, y =( a, b, m ∈ Z, m > 0)
Vì x < y nên ta suy ra a< b
Ta có : x =
, y =; z =
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
\(\left|12\right|=\pm12\)
\(\left|-12\right|=12\)
\(\left|\frac{5}{3}\right|=\pm\frac{5}{3}\)
\(\left|-\frac{4}{7}\right|=\frac{4}{7}\)
\(\left|0\right|=\pm0\)
Sửa: \(\left|12\right|=12;\left|-12\right|=12;\left|\frac{5}{3}\right|=\frac{5}{3};\left|-\frac{4}{7}\right|=\frac{4}{7};\left|0\right|=0\)
sửa \(\frac{x+1}{99}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+4}{96}\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1=\frac{x+2}{98}+1+\frac{x+4}{96}+1\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}-\frac{x+100}{98}-\frac{x+100}{96}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}-\frac{1}{98}-\frac{1}{96}\ne0\right)=0\Leftrightarrow x=-100\)