K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

a) \(\sqrt{\frac{1+\cos x}{1-\cos x}}-\sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sqrt{\left(1+\cos x\right)^2}-\sqrt{\left(1-\cos x\right)^2}}{\sqrt{\left(1-\cos x\right)\left(1+\cos x\right)}}\)

\(=\frac{1+\cos x-1+\cos x}{\sqrt{1-\cos^2x}}=\frac{2\cos x}{\sqrt{\sin^2x}}=\frac{2\cos x}{\sin x}=2\cot x\)

b) \(\frac{1}{\tan x+1}+\frac{1}{\cot x+1}=\frac{\tan x+1+\cot x+1}{\left(\tan x+1\right)\left(\cot x+1\right)}\)

\(=\frac{\tan x+\cot x+2}{\tan x+\cot x+\tan x.\cot x+1}=\frac{\tan x+\cot x+2}{\tan x+\cot x+2}=1\)

c) (ko bt có sai đề ko, làm mãi ko ra) 

d) \(\sin^21^0+\sin^22^0+\sin^23^0+...+\sin^289^0\)

\(=\left(\sin^21^0+\sin^289^0\right)+\left(\sin^22^0+\sin^288^0\right)+...+\sin^245^0\)

\(=\left[\left(\sin^21^0-\cos^289^0\right)+\left(\sin^289^0+\cos^289^0\right)\right]+\)

\(\left[\left(\sin^22^0-\cos^288^0\right)+\left(\sin^288^0+\cos^288^0\right)\right]+...+\sin^245^0\)

\(=\left(0+1\right)+\left(0+1\right)+...+\frac{\sqrt{2}}{2}=\frac{44+\sqrt{2}}{2}\)

7 tháng 7 2019

a) \(\sqrt{a-4}\)

\(ĐKXĐ:a\ge4\)

b) \(\sqrt{\frac{-3}{x-1}}\)

\(ĐKXĐ:x< 1\)

c) \(\sqrt{\frac{1-x}{-5}}\)

\(ĐKXĐ:x>1\)

7 tháng 7 2019

a,đk a>4

b,x<1

c,x>1

7 tháng 7 2019

\(\frac{\sqrt{a}-a}{a\sqrt{a}-a+\sqrt{a}}:\frac{1}{a^2+\sqrt{a}}\)

\(=\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{\sqrt{a}\left(a-\sqrt{a}+1\right)}.\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{1}\)

\(=\frac{1-\sqrt{a}}{a-\sqrt{a}+1}.\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=\sqrt{a}\left(1-\sqrt{a}\right)\left(\sqrt{a}+1\right)\)

\(=\sqrt{a}\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\)

\(=\sqrt{a}\left(1-a\right)\)

\(=\sqrt{a}-a\sqrt{a}\)

7 tháng 7 2019

đk a khac 0,a>0

kết quả là a-1

7 tháng 7 2019

đừng hỏi mấy câu hỏi linh tinh như vậy

xét tg ABCD có \(\widehat{A}+\widehat{C}=180^0\)

\(\Rightarrow\)ABCD là tg nt (O)  ( tg có tổng 2 góc đối = 1800 là tg nt )

xét (O) có \(\widehat{DAC}=\widehat{BAC}\)( AC là tia pg của \(\widehat{DAC}\))

\(\Rightarrow\)\(\widebat{DC}=\widebat{BC}\)(2 góc nt = nhau chắn 2 cung = nhau)

\(\Rightarrow\widehat{DBC}=\widehat{BDC}\)( 2 CUNG = NHAU CHẮN 2 GÓC NT = NHAU)

\(\Rightarrow\)\(\Delta BDC\)cân tại C 

mà CK là đường trung tuyến của \(\Delta BDC\)(K là trung điểm của BD)

\(\Rightarrow\)CK đồng thời là đường cao , đường trung tuyến , tia pg của \(\Delta BDC\)

\(\Rightarrow\)\(CK\perp BD\)              (1)

xét \(\Delta BDE\)là tam giác đều có CK là đường trung tuyến ( k là trung điểm của BD)

\(\Rightarrow\)EK đồng thời là đường cao , trung tuyến và tia phân giác của \(\Delta BDE\)

\(\Rightarrow EK\perp BD\)    (2)

TỪ (1) VÀ (2) \(\Rightarrow\)E , C , K thẳng hàng

#mã mã#

7 tháng 7 2019

tam giác

7 tháng 7 2019

Delta và delta' á, e năm nay ms vô lớp 9 nên chưa bt mà bọn e có dùng delta để giải pt no nguyên r

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_