K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

Lần sau em đăng trong h nhé!

Hướng dẫn: 

\(x-\sqrt{2x+7}\le4\)

<=> \(\sqrt{2x+7}\ge x-4\)(1) 

ĐK: x \(\ge\)-7/2

+) Với x  - 4 < 0 <=> x < 4  khi đó (1) <=> \(\sqrt{2x+7}\ge0>x-4\) luôn đúng 

Đối chiếu đk:  x\(\in\)[ -7/2; 4 ) 

+) Với x - 4 \(\ge\)0 <=> x \(\ge\)

(1) <=> \(2x+7\ge x^2-8x+16\)

<=> \(x^2-10x+9\le0\)

<=> x\(\in\)[ 1; 9 ]

Đối chiếu đk: x \(\in\)[4; 9 ]

Kết hợp 2 trường hợp ta có: x \(\in\)[ -7/2 ; 9 ]

Vậy a = -7/2; b = 9 nên 2a + b = 2

6 tháng 5 2020

\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)

\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)

Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)

Vậy \(P\le1\)hay max P = 1.

Dẫu "=" xảy ra <=> x = y = 1.

6 tháng 5 2020

Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)

Áp dụng BĐT Cauchy ta có:

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)

\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1

Vậy GTKN của P=1 đạt được khi x=y=1

5 tháng 5 2020

a) x,y nguyên => x+4; y-8 nguyên

=> x+4; y-8\(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

ta có bảng

x+4-6-3-2-11236
x-10-7-6-5-3-2-12
y-8-1-2-3-66321
y76521411109

Vậy (x;y)={(-10;7);(-7;6);(-6;5);(-5;2);(-3;14);(-2;11);(-1;10);(2;9)}

5 tháng 5 2020

b) 2x+xy+3y+6=10

<=> x(2+y)+3(y+2)=10

<=> (y+2)(x+3)=10

x,y nguyên => y+2; x+3 nguyên 

=> y+2; x+3\(\in\)Ư(10)={-10;-5;-2;-1;1;2;5;10}

ta có bảng

x+3-10-5-2-112510
x-13-8-5-4-2-127
y+2-1-2-5-1010521
y-3-4-7-12830-1
5 tháng 5 2020

a) Ta có 2n+8=2(n-3)+13

=> 13 chia hết cho n-3

=> n-3\(\in\)Ư(13)={-13;-1;1;13}

ta có bảng

n-3-13-113
n-10246
5 tháng 5 2020

b) Ta có 3n+11=3(n+5)-4

=> 4 chia hết cho n+5

=> n+5\(\in\)Ư(4)={-4;-2;-1;1;2;4}

ta có bảng

n+5-4-2-1124
n-9-7-6-4-3-1
5 tháng 5 2020

ĐKXĐ: \(\hept{\begin{cases}x^2-5x+2\ge0\\2x-1>0\\x-2\ge0\end{cases}\Leftrightarrow x\ge2}\)

Phương trình 

\(\Leftrightarrow\sqrt{x-2}\sqrt{2x-1}-x\sqrt{x-2}+3x-x^2-3\sqrt{2x-1}+x\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-x\right)\left(\sqrt{x-2}-3+x\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=x\\\sqrt{x-2}=3-x\end{cases}}\)

<=> 2x-1=x2 hoặc \(\hept{\begin{cases}3-x\ge0\\x-2=3-x^2\end{cases}}\)

<=> x2-2x+1=0 hoặc \(\hept{\begin{cases}x\le3\\x^2-7x+11=0\end{cases}}\)

<=> x=1 hoặc \(\hept{\begin{cases}x\le3\\x=\frac{7\pm\sqrt{3}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{7-\sqrt{5}}{2}\end{cases}}\)

Đối chiếu điều kiện x>=2 => x=\(=\frac{7-\sqrt{5}}{2}\left(tm\right)\)

Vậy pt có nghiệm \(x=\frac{7-\sqrt{5}}{2}\)

5 tháng 5 2020

đề bài có sai ko vậy