Cho đường tròn (C):\(x^2+y^2=4\)và điểm A(-2, 3)
a) Viết phương trình của các tiếp tuyến của (C) kể từ A.
b) Tính các khoảng cách từ A đến tiếp điểm của hai tiếp tuyến nói ở câu a) và khoảng cách giữa hai tiếp điểm đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau em đăng trong h nhé!
Hướng dẫn:
\(x-\sqrt{2x+7}\le4\)
<=> \(\sqrt{2x+7}\ge x-4\)(1)
ĐK: x \(\ge\)-7/2
+) Với x - 4 < 0 <=> x < 4 khi đó (1) <=> \(\sqrt{2x+7}\ge0>x-4\) luôn đúng
Đối chiếu đk: x\(\in\)[ -7/2; 4 )
+) Với x - 4 \(\ge\)0 <=> x \(\ge\)4
(1) <=> \(2x+7\ge x^2-8x+16\)
<=> \(x^2-10x+9\le0\)
<=> x\(\in\)[ 1; 9 ]
Đối chiếu đk: x \(\in\)[4; 9 ]
Kết hợp 2 trường hợp ta có: x \(\in\)[ -7/2 ; 9 ]
Vậy a = -7/2; b = 9 nên 2a + b = 2
\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)
\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)
Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)
Vậy \(P\le1\)hay max P = 1.
Dẫu "=" xảy ra <=> x = y = 1.
Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)
\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1
Vậy GTKN của P=1 đạt được khi x=y=1
a) x,y nguyên => x+4; y-8 nguyên
=> x+4; y-8\(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
ta có bảng
x+4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -10 | -7 | -6 | -5 | -3 | -2 | -1 | 2 |
y-8 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | 7 | 6 | 5 | 2 | 14 | 11 | 10 | 9 |
Vậy (x;y)={(-10;7);(-7;6);(-6;5);(-5;2);(-3;14);(-2;11);(-1;10);(2;9)}
b) 2x+xy+3y+6=10
<=> x(2+y)+3(y+2)=10
<=> (y+2)(x+3)=10
x,y nguyên => y+2; x+3 nguyên
=> y+2; x+3\(\in\)Ư(10)={-10;-5;-2;-1;1;2;5;10}
ta có bảng
x+3 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -13 | -8 | -5 | -4 | -2 | -1 | 2 | 7 |
y+2 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
a) Ta có 2n+8=2(n-3)+13
=> 13 chia hết cho n-3
=> n-3\(\in\)Ư(13)={-13;-1;1;13}
ta có bảng
n-3 | -13 | -1 | 1 | 3 |
n | -10 | 2 | 4 | 6 |
b) Ta có 3n+11=3(n+5)-4
=> 4 chia hết cho n+5
=> n+5\(\in\)Ư(4)={-4;-2;-1;1;2;4}
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
ĐKXĐ: \(\hept{\begin{cases}x^2-5x+2\ge0\\2x-1>0\\x-2\ge0\end{cases}\Leftrightarrow x\ge2}\)
Phương trình
\(\Leftrightarrow\sqrt{x-2}\sqrt{2x-1}-x\sqrt{x-2}+3x-x^2-3\sqrt{2x-1}+x\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-x\right)\left(\sqrt{x-2}-3+x\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=x\\\sqrt{x-2}=3-x\end{cases}}\)
<=> 2x-1=x2 hoặc \(\hept{\begin{cases}3-x\ge0\\x-2=3-x^2\end{cases}}\)
<=> x2-2x+1=0 hoặc \(\hept{\begin{cases}x\le3\\x^2-7x+11=0\end{cases}}\)
<=> x=1 hoặc \(\hept{\begin{cases}x\le3\\x=\frac{7\pm\sqrt{3}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{7-\sqrt{5}}{2}\end{cases}}\)
Đối chiếu điều kiện x>=2 => x=\(=\frac{7-\sqrt{5}}{2}\left(tm\right)\)
Vậy pt có nghiệm \(x=\frac{7-\sqrt{5}}{2}\)