Giải phương trình nghiệm nguyên
\(x^4+2x^3+3x^2+2x=y^2-y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có AD \(\perp\)BC nên ta có \(\widehat{ACD}=90-\widehat{DAC}\)
cmtt có \(\widehat{AHE}=90-\widehat{DAC}\)
\(\Rightarrow\widehat{ACD}=\widehat{AHE}\)
mà \(\widehat{AFE}=\widehat{AHE}\)
\(\Rightarrow\widehat{AFE}=\widehat{ACD}\)
Xét \(\Delta\) AFE và \(\Delta\) ABC có
\(\widehat{AFE}=\widehat{ACD}\left(cmt\right)\)
\(\widehat{BAC}chung\)
\(\Rightarrow\Delta AFE\infty\Delta ABC\left(g-g\right)\)
#cỪu
a, Xét Tam giác MBC có góc BMC lớn nhất vì là góc tù
=>BC>MC>BM
còn câu B bạn viết gì mình khong hiểu
C1 : Cardano (mk chưa học )
C2 : Mode set up -> 5 -> ax^3 + bx^2 + cx + d = 0
PT <=> \(x_1=-1,209...;x_2=2,104....\)
Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)
Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)
Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)
Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)
Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)
\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)
\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)
Đẳng thức xảy ra khi a = b = 1
a) Ta có A = 4x2 - 4x + 1 = (2x - 1)2 \(\ge0\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 => x = 0,5
Vậy GTNN của A là 0 khi x = 0,5
b) Ta có x2 + 4y2 + 4xy = x2 + 2xy + 2xy + 4y2 = x(x + 2y) + 2y(x + 2y) = (x + 2y)2 \(\ge0\forall x;y\)
Dấu "=" xảy ra <=> x + 2y = 0 => x = - 2y
Vậy GTNN của B là 0 khi x = -2y
a) 4x2 - 4x + 1 = ( 2x - 1 )2 ≥ 0 ∀ x
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
Vậy GTNN của biểu thức = 0 <=> x = 1/2
b) x2 + 4y2 + 4xy = ( x + 2y )2 ≥ 0 ∀ x ,y
Đẳng thức xảy ra <=> x + 2y = 0 => x = -2y
Vậy GTNN của biểu thức = 0 <=> x = -2y
a. \(4x-x^2+3=-\left(x-2\right)^2+7\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy bt max = 7 <=> x = 2
b. \(2x-2x^2-7=-2\left(x-\frac{1}{2}\right)^2-\frac{13}{2}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{13}{2}\le-\frac{13}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow-2\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy bt max = - 13/2 <=> x = 1/2
a) 4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 7 ≤ 7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
Vậy GTLN của biểu thức = 7 khi x = 2
b) 2x - 2x2 - 7
= -2( x2 - x + 1/4 ) - 13/2
= -2( x - 1/2 )2 - 13/2
-2( x - 1/2 )2 ≤ 0 ∀ x => -2( x - 1/2 )2 - 13/2 ≤ -13/2
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy GTLN của biểu thức = -13/2 khi x = 1/2
Ta có BĐT sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
CM: \(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
<=> \(a^2+b^2+c^2-ab-bc-ca\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (*)
=> BĐT (*) LUÔN ĐÚNG !!!!
=> \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
=> \(3\left(ab+bc+ca\right)\le0\)
=> \(ab+bc+ca\le0\)
VẬY TA CÓ ĐPCM.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+ca\right)=0\)
Vì \(a^2+b^2+c^2\ge0\forall a;b;c\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Rightarrow ab+bc+ca\le0\left(đpcm\right)\)
a) \(5x\left(x-1\right)-3x\left(x-1\right)\)
\(=2x\left(x-1\right)\)
b) \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c) \(x\left(x-y\right)+y\left(y-x\right)\)
\(=\left(x-y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2\)
d) \(x^2+xy+x=x\left(x+y+1\right)\)
a. 5x ( x - 1 ) - 3x ( x - 1 )
= ( 5x - 3x ) ( x - 1 )
b. x ( x + y ) - 5x - 5y
= x ( x + y ) - 5 ( x + y )
= ( x - 5 ) ( x + y )
c. x ( x - y ) + y ( y - x )
= x ( x - y ) - y ( x - y )
= ( x - y )2
d. x2 + xy + x
= x ( x + y + 1 )
\(x^4+2x^3+3x^2+2x=y^2-y\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)
\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)
Đến đây chắc khó.