cho hình chữ nhật ABCD có AB = 8cm , BC = 15cm
a. tính BD
b. vẽ AH vuông góc với BD tại H . tính AH
c. đường thẳng AH cắt BC , DC lần lượt tại I và K . chứng minh : AH^2 = HI . HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(đkxđ\Leftrightarrow x\ge4\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)
\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)
Dùng bảng xét dấu nha
\(\sqrt{x+16}=x-4\)
\(x+16=\left(x-4\right)^2\)
\(x+16=x^2-8x+16\)
\(x+16-x^2+8x-16=0\)
\(9x-x^2=0\)
\(x\left(9-x\right)=0\)
=> x=0 hoặc \(9-x=0\Leftrightarrow x=9\)
Vậy.....