K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Ko chắc đou:( Nhất là cái đk ý, phải xét đủ thứ cái ... nào là VT>=0 với bt trong căn >=0.. ko biết có nhầm lẫn hay ko nx!

ĐK: \(x\ge\sqrt{2}\)

PT <=> \(4x^2+3x-\frac{9}{2}=\sqrt{x^2-2}-\frac{1}{2}\)

\(\Leftrightarrow\left(4x-3\right)\left(x+\frac{3}{2}\right)=\frac{x^2-\left(\frac{3}{2}\right)^2}{\sqrt{x^2-2}+\frac{1}{2}}\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(4x-3-\frac{x-\frac{3}{2}}{\sqrt{x^2-2}+\frac{1}{2}}\right)=0\)

Giải cái ngoặc to: \(4x-3-\frac{2x-3}{2\sqrt{x^2-2}+1}=0\Leftrightarrow\left(8x-6\right)\sqrt{x^2-2}+2x=0\)

Dễ thấy VT >0 với mọi \(x\ge\sqrt{2}\) do vậy cái ngoặc to vô nghiệm.

\(\Rightarrow x=-\frac{3}{2}\)

14 tháng 7 2019

ĐK \(x\ge3\)

Pt 

<=> \(\left(x^2-8x+16\right)+\left(x-3-2\sqrt{x-3}+1\right)=0\)

<=> \(\left(x-4\right)^2+\left(\sqrt{x-3}-1\right)^2=0\)

Do \(VT\ge0\)

=> \(\hept{\begin{cases}x=4\\\sqrt{x-3}=1\end{cases}}\)=> x=4(tmKĐ)

Vậy x=4

14 tháng 7 2019

bạn học lớp mấy vậy

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

14 tháng 7 2019

trang?

21 tháng 9 2019

toàn cấp 2 ha

Bài làm

\(xy^2+2xy+x=32y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)

\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)

\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)

\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)

Để x là số nguyên dương thì 

\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)\(\left(y+1\right)^2\)là số chính phương 

\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)

\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)

\(\Leftrightarrow y=\left\{0;1;3\right\}\)

Vì y là số nguyên dương 

Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)

Vậy   x = 8; y = 1

hoặc x = 6; y = 3

# Chúc bạn học tốt #

15 tháng 7 2019

Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.