Giải phương trình:
4x2+3x-4=\(\sqrt{x^2-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x\ge3\)
Pt
<=> \(\left(x^2-8x+16\right)+\left(x-3-2\sqrt{x-3}+1\right)=0\)
<=> \(\left(x-4\right)^2+\left(\sqrt{x-3}-1\right)^2=0\)
Do \(VT\ge0\)
=> \(\hept{\begin{cases}x=4\\\sqrt{x-3}=1\end{cases}}\)=> x=4(tmKĐ)
Vậy x=4
1) a) Từ C dựng đường cao CF
Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1)
Từ A dựng đường cao AH
Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2)
(1), (2) => đpcm
b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)
Có: \(BF=c-AF=c-b.\cos A\)
Py-ta-go:
\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)
\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm)
c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)
bài 2 mk có làm r bn ib mk gửi link nhé
Bài làm
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)
\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)
Để x là số nguyên dương thì
\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)và\(\left(y+1\right)^2\)là số chính phương
\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\)
Vì y là số nguyên dương
Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)
Vậy x = 8; y = 1
hoặc x = 6; y = 3
# Chúc bạn học tốt #
Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.
Ko chắc đou:( Nhất là cái đk ý, phải xét đủ thứ cái ... nào là VT>=0 với bt trong căn >=0.. ko biết có nhầm lẫn hay ko nx!
ĐK: \(x\ge\sqrt{2}\)
PT <=> \(4x^2+3x-\frac{9}{2}=\sqrt{x^2-2}-\frac{1}{2}\)
\(\Leftrightarrow\left(4x-3\right)\left(x+\frac{3}{2}\right)=\frac{x^2-\left(\frac{3}{2}\right)^2}{\sqrt{x^2-2}+\frac{1}{2}}\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(4x-3-\frac{x-\frac{3}{2}}{\sqrt{x^2-2}+\frac{1}{2}}\right)=0\)
Giải cái ngoặc to: \(4x-3-\frac{2x-3}{2\sqrt{x^2-2}+1}=0\Leftrightarrow\left(8x-6\right)\sqrt{x^2-2}+2x=0\)
Dễ thấy VT >0 với mọi \(x\ge\sqrt{2}\) do vậy cái ngoặc to vô nghiệm.
\(\Rightarrow x=-\frac{3}{2}\)