Rút gọn biểu thức
\(\sqrt{\left(5+2\sqrt{6}\right)}+\sqrt{8-2\sqrt{15}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{5}< \sqrt{16}\left(=4\right)\)
\(\Rightarrow\sqrt{5}-4< 0\)
\(mà2\sqrt{3}>0\)
\(\Rightarrow2\sqrt{3}>\sqrt{5}-4\)
Ta có: \(\sqrt{5}< \sqrt{12}\)và \(-4< 0\)
\(\Rightarrow\sqrt{5}-4< \sqrt{12}+0=\sqrt{12}\)
mà \(\sqrt{12}=\sqrt{4.3}=\sqrt{4}.\sqrt{3}=2\sqrt{3}\)
\(\Rightarrow2\sqrt{3}=\sqrt{5}-4\)
mãi mãi mới có 1 bài đây nè
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 9 - Học toán với OnlineMath
vào thóng kê
k 3 phát như đã hứa nhé
HHHHHHOOOOCJJJJ TOOOOTS @@
\(\sqrt{\frac{1}{2}}+\sqrt{4,5}-\sqrt{12,5}-0,5\sqrt{200}+\sqrt{242}+6\sqrt{1\frac{1}{8}}-\sqrt{24,5}\)
\(=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}-\frac{5\sqrt{2}}{2}-5\sqrt{2}+11\sqrt{2}+\frac{9\sqrt{2}}{2}-\frac{7\sqrt{2}}{2}\)
\(=\frac{\sqrt{2}}{2}+6\sqrt{2}\)
\(=\frac{13\sqrt{2}}{2}\)
\(ĐKXĐ:\hept{\begin{cases}\sqrt{x}-1\ne0\\x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
\(B=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(=\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{x+\sqrt{x}+1}{x-1}\)
\(=\left(\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)}.\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{1}{x-1}\)
\(D=\left(\frac{x-2\sqrt{x}}{x-4}-1\right):\left(\frac{4}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-1\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
ĐKXĐ:
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
\(\sqrt{x}-3\ne0\Rightarrow\sqrt{x}\ne3\Rightarrow x\ne9\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(D=\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-1\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+2}-1\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}+2}:\frac{4-x+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-(\sqrt{x}-3)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-2}{\sqrt{x}+2}:\frac{4-x+x-4-x+\sqrt{x}+6}{(\sqrt{x}-3)\left(\sqrt{x}+2\right)}\)
\(=\frac{-2}{\sqrt{x}+2}:\frac{-x+\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-2}{\sqrt{x}+2}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}+2}\)
\(\sqrt{\left(5+2\sqrt{6}\right)}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{\left(2+2.\sqrt{2}.\sqrt{3}+3\right)}+\sqrt{3-2\sqrt{3}.\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{3}+\sqrt{5}\)
\(=\sqrt{2}+2\sqrt{3}+\sqrt{5}\)