K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

- Áp dụng bất đẳng thức Cô si ta có

              \left(x.\frac{1}{2}+x.\frac{1}{2}+y.\frac{1}{2}+y.\frac{1}{2}+x.\sqrt{1-x^2}+y.\sqrt{1-x^2}\right)^2\le(x.21​+x.21​+y.21​+y.21​+x.1−x2​+y.1−x2​)2≤

                 \left(x^2+x^2+y^2+y^2+x^2+y^2\right)\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+1-x^2+1-y^2\right)(x2+x2+y2+y2+x2+y2)(41​+41​+41​+41​+1−x2+1−y2)

tức là         \left(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(3x^2+3y^2\right)\left(3-x^2-y^2\right)(x+y+x1−y2​+y1−x2​)2≤(3x2+3y2)(3−x2−y2)

Suy ra          x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{3}.\sqrt{\left(x^2+y^2\right)\left(3-x^2-y^2\right)}x+y+x1−y2​+y1−x2​≤3​.(x2+y2)(3−x2−y2)​

                                                                                               \le\sqrt{3}.\frac{\left(x^2+y^2\right)+\left(3-x^2-y^2\right)}{2}≤3​.2(x2+y2)+(3−x2−y2)​

 hay        x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}x+y+x1−y2​+y1−x2​≤233​​  (đpcm)

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và bất đẳng thức AM-GM  ta có :

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)(1)

Đặt a + b + c - 3 = x 

Vì a,b,c > 1 => x > 0

=>  \(\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{\left(x+3\right)^2}{x}=\frac{x^2+6x+9}{x}=x+6+\frac{9}{x}\ge2\sqrt{x\cdot\frac{9}{x}}+6=12\)( AM-GM )

=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\)

=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\left(đpcm\right)\)

Đẳng thức xảy ra <=> x = 3 => a=b=c=2

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1^2}{2\cdot1}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c=1/3