\(\frac{\sqrt{y}}{x-\sqrt{xy}}+\frac{\sqrt{x}}{y-\sqrt{xy}}\)
a) rút gọn
b) tính giá trị bt trên tại x=4+\(2\sqrt{3}\)và y=4-\(2\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^2+9x-y^2-9=saide\)
\(a^2-14a-9b^2+49=\left(a-3b-7\right)\left(a+3b-7\right)\)
\(9-a^2-2ab-b^2=-\left(a+b-3\right)\left(a+b+3\right)\)
\(x^2-10x-y^2+10y=\left(x-y\right)\left(x+y-10\right)\)
\(a^2+2ab+b^2-81=\left(a+b-9\right)\left(a+b+9\right)\)
\(x^2-y^2+5x-5y=\left(x-y\right)\left(x+y+5\right)\)
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)
Sai đề rồi bạn ơi. Đề đúng : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\ge6.\)
Hoặc \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
a) A= x^2 +3x+2= x2+2.x.32+(32)2−14=(x+32)2−14≥14
Vậy GTNN của A là 1/4
b) tương tự
~Học tốt~