\(\text{Tìm GTNN:}\)
\(A=2x-2\sqrt{3x+1}-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
Ta có : \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{6}=5+2\sqrt{6}\)\(=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\Rightarrow5+\sqrt{24}< 5+\sqrt{25}\)hay \(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b ) \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
Ta có : \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003.2005}\)
\(=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)
\(=4008+2\sqrt{2004^2-1}\)
\(\left(2\sqrt{2004}\right)^2=4.2004=2.2004+2\sqrt{2004^2}\)\(=4008+2\sqrt{2004^2}\)
Vì \(4008+2\sqrt{2004^2-1}< 4008+2\sqrt{2004^2}\)=> \(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
c ) \(\sqrt{5\sqrt{3}}\)và \(\sqrt{3\sqrt{5}}\)
Ta có : \(\sqrt{5\sqrt{3}}=\sqrt{\sqrt{5^2.3}}=\sqrt{\sqrt{75}}\)
\(\sqrt{3\sqrt{5}}=\sqrt{\sqrt{3^2.5}}=\sqrt{\sqrt{45}}\)
Vì 75 > 45 => \(\sqrt{75}>\sqrt{45}\)hay \(\sqrt{5\sqrt{3}}>\sqrt{3\sqrt{5}}\)
gợi ý nhé
a (=) 2x.( 4x2+1) = (3x+2). căn(3x+1) ( x>=-1/3)
đặt 2x =a
căn (3x+1) = b (b>=0)
ta có hpt sau a.(a2 +1)=b.(b2+1) (1)
3a-2b2= -2 (2)
giải (1) (=) a3 + a = b3 + b
(=) (a-b).(a2+ab+b2+1) = 0 =) a=b ( vì a2+ab+b2+1>0)
phần còn lại tự giải nhé
b (=) (x+1).(x2+2x+2)=(x+2) . căn(x+1) (x>=-1)
(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0
=) x=-1
hay căn(x+1) . (x2+2x+2) -x-2=0
cách 1 giải phổ thông ( chuyển vế rồi bình phương)
cách 2 đặt ẩn phụ và lập hệ
đặt căn(x+1)=a (a>=0)
=) a.[x(a2+1)+2] = a2+1 và a2 - x =1
tự giải nhé
c,tạm thời chưa nghĩ ra
a.Tam giác ADC vuông tại D :
\(AC=\sqrt{AD^2+CD^2}=\sqrt{8^2+15^2}=17\)(cm)
b.Xét tam giác ACD vuông tại D
Theo hệ thức lượng ta có:
DM.AC=AD.DC
DM=\(\frac{8\cdot15}{17}=\frac{120}{17}\)(cm)
c.Ta thấy tam giác ANM ~ tam giác INB
mà tam giác INB ~ tam giác ICM
vậy tam giác ANM ~ tam giác ICM
từ đó ta có được
MN.MI=CM.AM
Mặt khác áp dụng htl trong tam giác ADC ta có: CM.AM=DI2
Vậy MN.MI=DI2
@.@
\(a,\)Áp dụng hệ thức lượng trong tam giác vuông ABC ta có
\(BC^2=AB^2+AC^2\Rightarrow BC^2=3^2+4^2\Rightarrow BC=\sqrt{9+16}\)
\(\Rightarrow BC=5cm\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}\Rightarrow BH=\frac{3^2}{5}=\frac{9}{5}cm\)
\(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}\Rightarrow CH=\frac{4^2}{5}=\frac{16}{5}cm\)
\(AH^2=\frac{9}{5}.\frac{16}{5}\Rightarrow AH^2=\frac{144}{25}\Rightarrow AH=\sqrt{\frac{144}{25}}=\frac{12}{5}cm\)
\(b,\)
\(BC=BH+CH\Rightarrow BC=9+16\Rightarrow BC=25cm\)
\(AB^2=BH.BC\Rightarrow AB^2=9.25\Rightarrow AB=\sqrt{225}=15cm\)
\(AC^2=CH.BC\Rightarrow AC^2=16.25\Rightarrow AC=\sqrt{400}=20cm\)
\(AH^2=BH.CH\Rightarrow AH^2=9.16\Rightarrow AH=\sqrt{144}=12cm\)
Giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
Không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> Giả sử sai
=> √7 là số vô tỉ
Nguồn : https://lazi.vn/edu/exercise/chung-minh-7-la-so-vo-ti
Tham khảo lời giải tại :
Chứng minh √7 là số vô tỉ - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
< https://lazi.vn/edu/exercise/chung-minh-7-la-so-vo-ti >
_Tần vũ_
\(\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)^2}=\frac{1}{2}\)
\(\Rightarrow4\sqrt{x}.2=1\left(\sqrt{x}+1\right)^2\)
\(\Rightarrow8\sqrt{x}=x+2\sqrt{x}+1\)
\(\Rightarrow x-6\sqrt{x}+1=0\)
\(a=1;b=-6;c=1;b'=-3\)
\(\Delta'=\left(-3\right)^2-1.1=9-1=8>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-3\right)+\sqrt{8}}{1}=3+2\sqrt{2}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-3\right)-\sqrt{8}}{1}=3-2\sqrt{2}\)
Có \(2x-2\sqrt{3x+1}-1\)
\(=\left(2x+\frac{2}{3}\right)-2\sqrt{\left(2x+\frac{2}{3}\right).\frac{3}{2}}+\frac{3}{2}-\frac{19}{6}\)
\(=\left(\sqrt{2x+\frac{2}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{19}{6}\ge-\frac{19}{6}\forall x\ge-\frac{1}{3}\)
Dấu " =" xảy ra\(\Leftrightarrow\hept{\begin{cases}\sqrt{2x+\frac{2}{3}}=\sqrt{\frac{3}{2}}\\x\ge-\frac{1}{3}\end{cases}}\Leftrightarrow x=\frac{5}{12}\)
Vậy....