1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{7}{3+\sqrt{2}}+\frac{2}{1-\sqrt{3}}\)
\(=\frac{7\left(3-\sqrt{2}\right)}{3^2-\sqrt{2}^2}+\frac{2\left(1+\sqrt{3}\right)}{1^2-\sqrt{3}^2}\)
\(=\frac{7\left(3-\sqrt{2}\right)}{7}+\frac{2\left(1+\sqrt{3}\right)}{-2}\)
\(=3-\sqrt{2}-1-\sqrt{3}\)
\(=2-\sqrt{2}-\sqrt{3}\)
\(A=\frac{7}{3+\sqrt{2}}+\frac{2}{1-\sqrt{3}}=\frac{7\left(3-\sqrt{2}\right)}{3^2-\left(\sqrt{2}\right)^2}+\frac{2\left(1+\sqrt{3}\right)}{1^2-\left(\sqrt{3}\right)^2}\)
\(=\frac{7\left(3-\sqrt{2}\right)}{9-2}+\frac{2\left(1+\sqrt{3}\right)}{1-3}=\frac{7\left(3-\sqrt{2}\right)}{7}+\frac{2\left(1+\sqrt{3}\right)}{-2}\)
\(=\left(3-\sqrt{2}\right)-\left(1+\sqrt{3}\right)=3-\sqrt{2}-1-\sqrt{3}=2-\sqrt{2}-\sqrt{3}\)
\(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{6}^2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{5+2\sqrt{6}-6}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{2\sqrt{6}-1}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{2\sqrt{6}^2-1^2}\)
\(=\frac{4\sqrt{3}+6\sqrt{2}+12+\sqrt{2}+\sqrt{3}+\sqrt{6}}{11}\)
\(=\frac{\sqrt{6}+5\sqrt{3}+7\sqrt{2}+12}{11}\)
\(\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2\) \(ĐKXĐ:\hept{\begin{cases}a\ge0\\b\ge0\\a\ne b\end{cases}}\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\left(\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\right)\left(\frac{1}{\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
\(=1\)
\(\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)-b\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\left(\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\frac{1}{\left(\sqrt{a}+\sqrt{b}\right)^2}.\)\(=1\)
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
= \(\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}-\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}-1\right)}\)
= \(\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{1+\sqrt{3}}+1\right)\left(\sqrt{1+\sqrt{3}}-1\right)}\)
= \(\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}\)
= 2
a) Tìm nhiệt độ của nước khi cân bằng nhiệt: Khối lượng của nước trong bình là: m1 = V1D1 = (R.R2 - )D1, thay số ta tính được: m1 = 10, 46 kg Khối lượng của quả cầu: m2 = D2.V2 = .D2, thay số ta được m2 = 11,304 kg |
Từ điều kiện bài toán đã cho, ta có phương trình cân bằng nhiệt: c1m1 (t – t1) = c2m2 (t2 – t), do đó ta có nhiệt độ của nước khi cân bằng nhiệt: t = , thay số ta tính được t 0C |
Áp lực của quả cầu lên đáy bình : F = Pcầu – FA(cầu) = 10m2 - 10.RD1 thay số ta được : F = 92,106 N |
b. (0,75 điểm) |
Tính khối lượng của dầu m3 : do thể tích của dầu và nước bằng nhau nên khối lượng của dầu là : m3 = , thay số m3 = 8,368 kg |
Khi cân bằng nhiệt, nhiệt độ của hệ là tx, ta có phương trình : c1m1 (t – tx) + c2m2 (t – tx) = c3m3 (tx – t3) tx = thay số ta tính được tx 21,050C |
Áp lực của quả cầu lên đáy bình : F = Pcầu – FA(cầu) = 10m2 - R(D1 + D3) thay số ta được : F = 75,36 N
|
Trục căn thức ở mẫu của biểu thức sau :
1 phần 1 cộng căn bậc hai cộng căn bậc ba (sr mik ko bt viết)
\(M=\frac{\sin^3a+3\cos^3a}{27\sin^3a-25\cos^3a}\)
\(M=\frac{\frac{\sin^3a+3\cos^3a}{\cos^3a}}{\frac{27\sin^3a-25\cos^3a}{\cos^3a}}\)
\(M=\frac{\tan^3a+3}{27\tan^3a-25}\)
\(M=\frac{\frac{8}{27}+3}{27.\frac{8}{27}-25}\)
\(M=\frac{\frac{89}{27}}{-17}\)
\(M=-\frac{89}{459}\)
P/s haphuong
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y