Cho tam giác đều ABC đuờng cao AH độ dài các cạnh =a .Tính các tỉ só lượng giiac của góc ABH và góc HAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\forall k\ge0\)ta có :
\(\frac{1}{\sqrt{k}+\sqrt{k+1}}=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)
Bạn áp dụng công thức này vào dãy trên ta sẽ có các số hạng triệt tiêu đi nhau và ra kết quả
Giúp mình với
CMR nếu \(a+b\in Z\)và \(ab\in Z\)thì \(\hept{\begin{cases}a\in Z\\b\in Z\end{cases}}\)
\(\frac{2}{2a-1}.\sqrt{5x^4\left(1-4a+4a^2\right)}\)
\(=\frac{2}{2a-1}.\sqrt{5x^4\left(2a-1\right)^2}\)
\(=\frac{2}{2a-1}.x^2.\left(2a-1\right).\sqrt{5}\)
\(=2\sqrt{5}x^2\)
Gọi tam giác cân là ABC (cân tại A), đường cao AH.
Gọi cạnh đáy của tam giác cân là a, cạnh bên là b. Theo đề bài:
10a = 12b
=> a/b = 6/5
Đặt a = 6k, b = 5k
Xét tam giác AHC vuông tại H:
AH^2 + HC^2 = AC^2
<=> 10^2 + a^2/4 = b^2
<=> a^2/4 = b^2 - 100
<=> (6k)^2/4 = (5k)^2 - 100
<=> 9k^2 = 25k^2 - 100
<=> 16k^2 = 100 <=> k = 10/4
=> a = 6k = 6.10/4 = 15 (cm)
=> S_ABC = 1/2BC.AH = 1/2a.10 = 5a = 5.15 = 75 (cm^2)
\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1-1}\)
<=> 3x\(=\sqrt{3x+1-1}.\sqrt{3x+10}\)
<=> (3x)2 = (\(\sqrt{3x+1-1}.\sqrt{3x+10}\))2
<=> 9x2 = 9x2 + 30
<=> x = 0
=> x = 0
đm hỏi bậy