Một nhóm thợ dự kiến làm 3200 sản phẩm trong một thời gian quy định. 5 ngày đầu nhóm thợ làm đúng theo mức đề ra. Trong những ngày còn lại họ làm vượt mức mỗi ngày 40 sản phẩm so với kế hoạch nên đã hoàn thành trước thời gian quy định 3 ngày. Hỏi theo kế hoạch mỗi ngày đội thợ đó làm được bao nhiêu sản phẩm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hà
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) hình mình ko vẽ nhé
b) mình nghĩ phần này chưa tới tứ giác nội tiếp nên làm cách này
Xét \(\Delta OIE\)và \(\Delta OAH\)có :
\(\widehat{OEI}=\widehat{OHA}\left(=90^o\right);\widehat{EOI}\)( góc chung )
\(\Rightarrow\Delta OEI\approx\Delta OHA\left(g.g\right)\)
\(\Rightarrow\frac{OE}{OH}=\frac{OI}{OA}\Rightarrow OI.OH=OE.OA\)
Áp dụng hệ thức lượng vào \(\Delta ACO\)vuông tại C, ta có :
\(OC^2=OE.OA\)
Suy ra \(OI.OH=OC^2=R^2\)
2) \(\hept{\begin{cases}mx-y=2\left(1\right)\\x+my=1\left(2\right)\end{cases}}\)
Lấy ( 2 ) - ( 1 ), ta được : \(x+my-mx+y=-1\)
\(\Leftrightarrow m\left(y-x\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\y-x=0\end{cases}\Rightarrow\orbr{\begin{cases}m=0\\x=y=-\frac{1}{2}\end{cases}}}\)
Thay \(x=y=-\frac{1}{2}\)vào ( 1 ) ta tìm được m = -3
Vậy m = 0 hoặc m = -3 thì x + y = -1
3) Gọi diên tích thửa ruộng là S ; chiều dài là a ; chiều rộng là b \(\Rightarrow ab=S\)
Nếu chiều rộng tăng thêm 2m, chiều dài giảm 2 m thì S tăng thêm 30m2 nên ta có pt : \(\left(b+2\right)\left(a-2\right)=S+30\)
hay \(\left(b+2\right)\left(a-2\right)=ab+30\)\(\Rightarrow a-b=17\)
Nếu chiều rộng giảm đi 2m, chiều dài tăng 5m thì S giảm 20m2 nên ta có pt : \(\left(b-2\right)\left(a+5\right)=S-20=ab-20\)
\(\Rightarrow-2a+5b=-10\)
Từ đó ta có hệ phương trình : \(\hept{\begin{cases}a-b=17\\-2a+5b=-10\end{cases}\Rightarrow\hept{\begin{cases}a=25\\b=8\end{cases}}}\)
Vậy S thửa ruộng là : \(ab=25.8=200\)m2
gọi x là số sản phẩm làm 1 ngày theo dự định
3200/x là số ngày làm 3200 sp theo dự định
5+(3200-5x)/(x+40) là số ngày làm xong sản phẩm thực tê
ta có pt
3200/x-3=(5+(3200-5x)/(x+40))
xong chị giải pt ra là đc