Cho đường tròn tâm O bán kính R ,vẽ các dây AB=R,CD=R√2,EF=R√3.Tính số đo các cung nhỏ AB,CD,EF(√ là kí hiệu căn,help mình với mng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x-5y=1\\x+5y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5y+x+5y=1+23\\x+5y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=24\\x+5y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\8+5y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
Dễ dàng chứng minh rằng các số có dạng \(n^3\) khi chia cho 7 sẽ chỉ có các số dư là \(0,1,6\). (Bằng cách đặt \(n=7k+i\left(i=\overline{0,6}\right)\) rồi khai triển biểu thức \(\left(7k+i\right)^3=\left(7k\right)^3+3\left(7k\right)^2i+3.7k.i^2+i^3\) và xét số dư của \(i^3\) cho 7.
Nếu trong 3 số a, b, c có 1 số chia hết cho 7 thì đương nhiên ta có đpcm.
Nếu trong 3 số a, b, c không có số nào chia hết cho 7 (tức là không có số nào trong 3 số \(a^3,b^3,c^3\) chia hết cho 7), thì theo nguyên lí Dirichlet, tồn tại 2 số trong 3 số \(a^3,b^3,c^3\) có cùng số dư khi chia cho 7 (do lúc này chỉ còn 2 số dư là 1,6). Giả sử 2 số đó là \(a^3,b^3\). Khi đó \(a^3-b^3⋮7\) \(\Rightarrowđpcm\)
Vậy trong mọi trường hợp, ta đều có đpcm.