Cả hai thùng chứa 398 lít nước nắm. Nếu đổ 50 lít từ thùng thứ nhất sang thùng thứ hai thì lúc đó thùng thứ hai nhiều hơn thùng thứ nhất 16 lít.
Hỏi số lít nước mắm lúc đầu ở thùng thứ nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dù đổ bao nhiêu lít từ thùng nọ sang thùng kia bao nhiêu lít thì tổng số lít nước mắm hai thùng đều không thay đổi và bằng lúc là 398 lít.
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Số lít nước mắm thùng thứ nhất lúc sau là:
(398 - 16) : 2 = 191 (l)
Số lít nước mắm thùng thứ nhất lúc đầu là:
191 + 50 =241 (l)
Số lít nước mắm thùng thứ hai lúc đầu là:
398 - 241 = 157 (l)
Đáp số:..
2 lần số tuổi của con hiện nay là:
32+4-3x4=36-12=24(tuổi)
Tuổi con hiện nay là 24:2=12(tuổi)
Tuổi của cha hiện nay là 12+32=44(tuổi)
Giải:
\(\dfrac{12}{4}\) = \(3\)
\(\dfrac{4}{12}\) = \(\dfrac{1}{3}\)
#hoctot!
mình cx k hiểu ý bạn lắm nên mk làm đại ạ:))
Vì AB//CD
nên \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{1}{3}\)
Vì \(\dfrac{OA}{OC}=\dfrac{1}{3}\)
nên \(S_{AOB}=\dfrac{1}{3}\times S_{BOC}\)
=>\(S_{BOC}=3\times6=18\left(cm^2\right)\)
Vì OB/OD=1/3
nên \(S_{AOB}=\dfrac{1}{3}\times S_{AOD}\)
=>\(S_{AOD}=3\times6=18\left(cm^2\right)\)
Vì OB/OD=1/3
nên \(S_{BOC}=\dfrac{1}{3}\times S_{DOC}\)
=>\(S_{DOC}=3\times18=54\left(cm^2\right)\)
\(S_{ABCD}=S_{ABO}+S_{BCO}+S_{DOC}+S_{AOD}\)
\(=3+18+18+54=93\left(cm^2\right)\)
Ngày thứ hai đọc được:
\(\dfrac{1}{6}\cdot2=\dfrac{1}{3}\)(cuốn sách)
Sau hai ngày thì số phần sách còn lại chưa đọc là:
\(1-\dfrac{1}{3}-\dfrac{1}{6}=\dfrac{1}{2}\)
30 trang cuối cùng chiếm:
\(\dfrac{1}{2}\left(1-\dfrac{2}{3}\right)=\dfrac{1}{2}\cdot\dfrac{1}{3}=\dfrac{1}{6}\)(cuốn sách)
Số trang của cuốn sách là \(30:\dfrac{1}{6}=30\cdot6=180\left(trang\right)\)
Ta có:
\(a^4+\dfrac{1}{4}=\left(a^2+\dfrac{1}{2}\right)^2-a^2=\left(a^2+a+\dfrac{1}{2}\right)\left(a^2-a+\dfrac{1}{2}\right)\)
\(=\left(a^2+a+\dfrac{1}{2}\right)\left(a^2-2a+1+a-1+\dfrac{1}{2}\right)\)
\(=\left(a^2+a+\dfrac{1}{2}\right)\left[\left(a-1\right)^2+\left(a-1\right)+\dfrac{1}{2}\right]\)
Do đó:
\(K=\dfrac{\left(2^2+2+\dfrac{1}{2}\right)\left(1^2+1+\dfrac{1}{2}\right)...\left(\left(2n\right)^2+2n+\dfrac{1}{2}\right)\left(\left(2n-1\right)^2+\left(2n-1\right)+\dfrac{1}{2}\right)}{\left(1^2+1+\dfrac{1}{2}\right)\left(0^2+0+\dfrac{1}{2}\right)...\left(\left(2n-1\right)^2+\left(2n-1\right)+\dfrac{1}{2}\right)\left(\left(2n-2\right)^2+\left(2n-2\right)+\dfrac{1}{2}\right)}\)
\(=\dfrac{\left(2n\right)^2+2n+\dfrac{1}{2}}{0^2+0+\dfrac{1}{2}}=8n^2+4n+1\)
\(=\left(2n\right)^2+\left(2n+1\right)^2\) là tổng của 2 SCP
ai giải hộ em câu này với
cho 30g hôn hợp c2h5oh với ch3cooh phản ứng hết với 100ml NaOH 1M
a) tính phần trăm kl các chất ban đầu
b)tính kl Na cần để phản ứng với lượng c2h5oh
b: \(A=\dfrac{\left(4\cdot3^7\right)^2-7\cdot9^7}{135\cdot9^6+27^5}=\dfrac{2^4\cdot3^{14}-7\cdot3^{14}}{3^{12}\cdot3^3\cdot5+3^{15}}\)
\(=\dfrac{3^{14}\left(2^4-7\right)}{3^{15}\left(5+1\right)}=\dfrac{1}{3}\cdot\dfrac{9}{6}=\dfrac{1}{3}\cdot\dfrac{3}{2}=\dfrac{1}{2}\)
\(B=\dfrac{1}{6}+\dfrac{1}{66}+\dfrac{1}{176}+\dfrac{1}{336}+\dfrac{1}{546}\)
\(=\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+\dfrac{1}{16\cdot21}+\dfrac{1}{21\cdot26}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+\dfrac{5}{21\cdot26}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{26}\right)=\dfrac{1}{5}\cdot\dfrac{25}{26}=\dfrac{5}{26}\)
\(A+B=\dfrac{1}{2}+\dfrac{5}{26}=\dfrac{18}{26}=\dfrac{9}{13}\)
Câu 2:
a: \(A=\overline{ababab}=10^5\cdot a+10^4\cdot b+10^3\cdot a+10^2\cdot b+10\cdot a+b\)
\(=a\cdot\left(10^5+10^3+10\right)+b\left(10^4+10^2+1\right)\)
\(=\left(10^4+10^2+1\right)\left(10a+b\right)\)
\(=10101\left(10a+b\right)=13\cdot777\cdot\left(10a+b\right)⋮13\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
ΔHBA~ΔABC
=>\(\dfrac{BA}{BC}=\dfrac{HB}{AB}\left(1\right)\)
ΔHBA~ΔABC
=>\(\dfrac{HA}{AC}=\dfrac{BA}{BC}\)
=>\(HA=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
c: Xét ΔABC có BN là phân giác
nên \(\dfrac{BA}{BC}=\dfrac{NA}{NC}\left(2\right)\)
Xét ΔBHA có BM là phân giác
nên \(\dfrac{BH}{BA}=\dfrac{MH}{MA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{NA}{NC}=\dfrac{MH}{MA}\)
=>\(MA\cdot NA=MH\cdot NC\)
Dù đổ bao nhiêu lít từ thùng nọ sang thùng kia bao nhiêu lít thì tổng số lít nước mắm hai thùng đều không thay đổi và bằng lúc là 398 lít.
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Số lít nước mắm thùng thứ nhất lúc sau là:
(398 - 16) : 2 = 191 (l)
Số lít nước mắm thùng thứ nhất lúc đầu là:
191 + 50 =241 (l)
Số lít nước mắm thùng thứ hai lúc đầu là:
398 - 241 = 157 (l)
Đáp số:..