tìn giá trị lớn nhất và nhỏ nhất của biểu thức A=\(\frac{3x+4}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC nhọn, p là nửa chu vi, S là diện tích
CMR: \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)
\(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
<=> \(cotA.S+cotB.S+cotC.S\ge\frac{p^2}{3}\)
MÀ \(S=\frac{1}{2}ab.sinC=\frac{1}{2}bc.SinA=\frac{1}{2}ac.SinB\)
=> \(\frac{1}{2}bc.cosA+\frac{1}{2}ab.cosC+\frac{1}{2}ac.cosC\ge\frac{p^2}{3}\)
Áp dụng công thức hàm cos ta có \(cosA=\frac{b^2+c^2-a^2}{2bc};cosB=\frac{a^2+c^2-b^2}{2ac};cosC=\frac{b^2+a^2-c^2}{2ab}\)
ĐPCM
<=> \(\frac{1}{4}\left(a^2+b^2-c^2\right)+\frac{1}{4}\left(b^2+c^2-a^2\right)+\frac{1}{4}\left(a^2+c^2-b^2\right)\ge\frac{\left(\frac{a+b+c}{2}\right)^2}{3}\)
<=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> ĐPCM
Dấu bằng xảy ra khi a=b=c => Tam giác ABC đều
Vậy \(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
A B C H K L
Gọi AH,BK,CL là 3 đường cao của \(\Delta\)ABC. Khi đó:
\(\cot B=\frac{BH}{HA},\cot C=\frac{CH}{HA}\) suy ra \(\cot B+\cot C=\frac{BC}{HA}\)
Chứng minh tương tự rồi cộng theo vế ta được:
\(2\left(\cot A+\cot B+\cot C\right)=\frac{BC}{HA}+\frac{CA}{KB}+\frac{AB}{LC}\)
\(=\frac{BC^2}{2S}+\frac{CA^2}{2S}+\frac{AB^2}{2S}\ge\frac{\left(BC+CA+AB\right)^2}{6S}=\frac{2p^2}{3S}\)(BĐT Schwartz)
Do đó \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi tam giác ABC là tam giác đều.
Áp dụng Cô si cho 2 số không âm ta có:
\(\hept{\begin{cases}\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\\\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\\\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\end{cases}}\)\(\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
dâu = xảy ra khi a=b=c
ĐKXĐ : \(x^3+x^2+6\ge0\)
\(pt\Leftrightarrow x^2+x+9=6+x^2+x^3\)
\(\Leftrightarrow x^3-x-3=0\)
Đến đây có lẽ dùng công thức Cardano là ra , nhưng mà không biết bạn học Cardano chưa nhỉ ?
\(A=x-\sqrt{x}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(A=x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(A=\left(x-\frac{1}{2}\right)^2\) \(-\frac{1}{4}\)
Có \(\left(x-\frac{1}{2^2}\right)\ge0\forall x\ge0\)
\(\left(x-\frac{1}{2}\right)^2\) - 1/4 >= \(\frac{-1}{4}\)mọi x>=0
Dấu = sảy ra \(\Leftrightarrow\) x- \(\frac{1}{2}\) = 0
\(\Leftrightarrow\) x = 1 / 2 ( t/m )
vậy A đạt GTNN là -1/4 tại x = 1/2
Tớ nhầm nhé \(x\) từ dòng thứ 3 xuống pahir thay =\(\sqrt{x}\)
\(A=\frac{3-4x}{2x^2+2}\)
\(\Leftrightarrow2Ax^2+2A=3-4x\)
\(\Leftrightarrow2Ax^2+4x+2A-3=0\)
*Nếu A = 0 thì \(x=\frac{3}{4}\)
*Nếu A # 0 thì pt trên là pt bậc 2
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-2A\left(2A-3\right)\ge0\)
\(\Leftrightarrow4-4A^2+6A\ge0\)
\(\Leftrightarrow-\frac{1}{2}\le A\le2\)
Vì \(-\frac{1}{2}< 0\Rightarrow\hept{\begin{cases}A_{min}=-\frac{1}{2}\Leftrightarrow x=...\\A_{max}=2\Leftrightarrow x=...\end{cases}}\)(CHỗ ... là tự làm nhé)
#)Góp ý :
Tham khảo ở : Câu hỏi của Nguyễn Ánh Tuyền - Toán lớp 9 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/54093991490.html
\(A=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(A=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)
\(A=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
\(A=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\)
\(A=\frac{6}{6}=1\)
\(A=1\)
ĐKXĐ : x > 2
Ta có \(\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+x-6}\right)=5\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{\left(x+3\right)\left(x-2\right)}\right)=5\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\left(a>0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3-x+2=5\) và \(a\ne b\)
Pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(1-b\right)=0\)
\(\Leftrightarrow a=b\left(h\right)a=1\left(h\right)b=1\) (h) là hoặc nhé
*Với a = b (Loại do a khác b)
*Với \(a=1\Rightarrow\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
\(\Leftrightarrow x=-2\)(Loại do ko thỏa mãn ĐKXĐ)
*Với \(b=1\Rightarrow\sqrt{x-2}=1\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow x=3\left(Tm\cdotĐKXĐ\right)\)
Vậy pt có nghiệm duy nhất x = 3
https://diendantoanhoc.net/topic/74052-cho-xyz0-xyz1-tim-gtnn-c%E1%BB%A7a-p-fracx2yzyzfracy2zxzxfracz2xyxy/
vào là có ok
Ta có \(A=\frac{3x+4}{x^2+1}\)
=> \(Ax^2-3x+A-4=0\)
+ \(A=0\)
=> \(x=-\frac{4}{3}\)
+ \(A\ne0\)=> \(x\ne-\frac{4}{3}\)
=> \(\Delta=9-4A\left(A-4\right)\ge0\)
=> \(4A^2-16A-9\le0\)
=> \(-\frac{1}{2}\le A\le\frac{9}{2}\)
=> \(MinA=-\frac{1}{2}\)khi x=-3(TM \(x\ne\frac{-4}{3}\))
\(Max=\frac{9}{2}\)khi \(x=\frac{1}{3}\)(TM \(x\ne-\frac{4}{3}\))