hai đội công nhân cùng làm chung một công việc thì sau 4 giờ sẽ xong , nhưng hai đội mới làm chung được 3 giờ thì đội 1 nghỉ ,đội 2 tiếp tục làm thêm 3 giờ nữa mới xong. Hỏi mỗi đội Nếu làm một mình thì phải mất bao lâu mới xong công việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
- Gọi số người thợ ban đầu và số ngày cần làm theo quy định lần lượt là x (người) và y (ngày), (điều kiện cậu tự viết nhé)
- Từ đó ta có số công việc cân làm là : xy (công việc)
- Khi giảm 3 người thợ thì ta còn lại : x -3 (người)
- Khi thời gian phải kéo dài thêm 6 ngày thì tổng số ngày làm để xong việc là : y + 6 (ngày)
- Khi giảm 3 người thợ thì kéo dài thêm 6 ngày, mà số lượng công việc khong đổi nên ta có phương trình :
(x - 3).(y + 6) = xy <=> 6x - 3y = 18 (1)
/tăng thêm 2 người, xong sớm 2 ngày cũng làm tượng tự như vậy nha/ Từ đó ta có phương trình:
(x +2).(y - 2) = xy <=> -2x + 2y = 4 (2)
/từ chỗ này thì cậu tự giải hệ phương trình nha/
Gọi thời gian mỗi đội làm một mình để xong công việc lần lượt là \(x,y\left(h\right);x,y>0\).
Mỗi giờ mỗi đội làm được lần lượt số phần công việc là: \(\frac{1}{x},\frac{1}{y}\)công việc.
Theo bài ra ta có hệ phương trình:
\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\3\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=12\end{cases}}\left(tm\right)\).
12 giờ