K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2024

Diện tích hình vuông lúc sau bằng:

  100% + 44% = 144% (diện tích hình vuông lúc đầu)

   144 = 12 x 12

  Vậy cạnh hình vuông cần tăng lên: 12% 

   Đáp số: 12%

 

 

 

 

11 tháng 1 2024

29.(85 - 47) + 85.(47 - 29) 

= 29.85 - 29.47 + 85.47 - 85.29 

= -29.47 + 85.47

= 47.(-29 + 85) 

= 56.47

= 2632 

11 tháng 1 2024

   29.(85 - 47) + 85.(47 - 29)

= 29.85 - 29.47 + 85.47 - 85.29

= (29.85 - 29.85) + (85.47 - 29.47)

= 0 + 47.(85  - 29)

= 47.56

= 2632

25 tháng 1 2024

a) Δ���∽Δ���ΔAIEΔACI (g.g) suy ra ����=����ACAI=AIAE hay ��2=��.��AI2=AE.AC (1)

Chứng minh tương tự:

Δ���∽Δ���ΔAIKΔAKB (g.g) suy ra ����=����ABAK=AKAF hay ��2=��.��AK2=AB.AF (2)

Mà Δ���∽Δ���ΔABEΔACF (g.g) suy ra ����=����ACAB=AFAE hay ��.��=��.��AB.AF=AC.AE (3)

Từ (1), (2) và (3) ta có ��2=��2AI2=AK2 suy ra ��=��AI=AK.

b) Vì �^=60∘A=60 suy ra �1^=30∘B1=30

Trong tam giác ���ABE vuông tại E nên ��=12��,AE=21AB,

Trong tam giác ���AFC vuông tại F có �1^=30∘C1=30 suy ra ��=12��AF=21AC.

Do đó, Δ���∽Δ���ΔAEFΔABC (c.g.c).

suy ra ��������=(����)2=14SABCSAEF=(ABAE)2=41.

Vậy ����=14.120=30SAEF=41.120=30 cm22.

11 tháng 1 2024

Nữa chu vi hình chữ nhật là:

128 : 2 = 64 (cm) 

Chiều dài của hình chữ nhật là:

(64 + 12) : 2 = 38 (cm)

Chiều rộng của hình chữ nhật là:

38 - 12 = 26 (cm) 

Diện tích của hình chữ nhật là:

38 x 26 = 988 (cm2)

Đáp số: ...

11 tháng 1 2024

Nửa chu vi của hình chữ nhật đó là:

\(128:2=64\left(cm\right)\)

Chiều dài của hình chữ nhật đó là:

\(\left(64+12\right):2=38\left(cm\right)\)

Chiều rộng của hình chữ nhật đó là:

\(64-38=26\left(cm\right)\)

Diện tích của hình chữ nhật đó là:

\(38\times26=988\left(cm^2\right)\)

Đáp số: \(988cm^2\)

11 tháng 1 2024

chào nhé

25 tháng 1 2024

Gọi ��BF cắt ��DC tại K��BE cắt ��DC tại I, và ��EF cắt ��AB tại G.

Δ���ΔFAB có ��DK // ��AB suy ra ����=����ABDK=FAFD (1)

Δ���ΔFAG có ��DH // ��AG suy ra ����=����AGDH=FAFD (2)

Từ (1) và (2) suy ra ����=����ABDK=AGDH hay ����=����DHDK=AGAB (*)

Tương tự Δ���ΔEIC có ��AB // ��IC suy ra ����=����ABIC=EAEC (3)

Δ���ΔEHC có ��HC // ��AB suy ra ����=����AGHC=EAEC (4)

Từ (3) và (4) ta có ����=����ABIC=AGHC hay ����=����HCIC=AGAB (**)

Từ (*) và (**) ta có ����=����DHDK=HCIC.

Mà ��=��DH=HC (gt) suy ra ��=��DK=IC

Mặt khác ��=��BD=BC (gt) nên Δ���ΔBDC cân

Suy ra ���^=���^BDK=BCI

Vậy Δ���=Δ���ΔBDK=ΔBCI (c.g.c)

Suy ra ���^=���^DBK=CBI.

25 tháng 1 2024

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

25 tháng 1 2024

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)

Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)

Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.

b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1

Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED

     ����+��=����+��AE+EKAE=ED+EBED

     ����=����AKAE=DBED (3)

Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE

     ����+��=����+��AE+EGAE=BE+EDBE

     ����=����AGAE=BDBE (4)

Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.

c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.

Suy ra ��=��.����DG=KCAD.CG

Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.

DT
11 tháng 1 2024

3n là bội của n+3

=> 3n chia hết cho (n+3)

=> 3(n+3)-9 chia hết cho (n+3)

=> 9 chia hết cho (n+3)

=> n+3 thuộc Ư(9) 

Với n là số nguyên dương

=> n+3 >= 4 và n+3 nguyên 

Do đó n+3 = 9

=> n=6

11 tháng 1 2024

3N là bội của N + 3 

⇒ 3N ⋮ N + 3

⇒ 3N + 9 - 9 ⋮ N + 3

⇒ 3(N + 3) - 9 ⋮ N + 3

⇒ 9 ⋮ N + 3

⇒ N + 3 ∈ Ư(9) = {1; -1; 3; -3; 9; -9}

⇒ N ∈ {-2; -4; 0; -6; 6; -12}

Mà N là số nguyên dương nên N = 6 

Vậy: ...

25 tháng 1 2024

Qua A vẽ đường thẳng song song với ��BC cắt ��′BB tại D và cắt ��′CC tại E.

Khi đó 

Δ���ΔAME có ��AE // �′�AC suy ra ���′�=���′�AMAM=ACAE (1)

Δ���ΔAMD có ��AD // �′�AB suy ra ���′�=���′�AMAM=ABAD (2)

Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=����AMAM=ACAE=ABAD=AC+ABAD+AE=BCDE (*)

Chứng minh tương tự ta cũng có:

Δ��′�ΔABD có ��AD // ��BC suy ra ��′�′�=����BCAB=BCAD (3)

Δ��′�ΔACE có ��AE // ��BC suy ra ��′�′�=����CBAC=BCAE (4)

Từ (3) và (4) ta có ��′�′�+��′��′=����+����=����BCAB+BCAC=BCAD+BCAE=BCDE (**)

Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′AMAM=BCDE=BCAB+BCAC (đpcm).

25 tháng 1 2024

Qua A vẽ đường thẳng song song với ��BC cắt ��′BB tại D và cắt ��′CC tại E.

Khi đó 

Δ���ΔAME có ��AE // �′�AC suy ra ���′�=���′�AMAM=ACAE (1)

Δ���ΔAMD có ��AD // �′�AB suy ra ���′�=���′�AMAM=ABAD (2)

Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=����AMAM=ACAE=ABAD=AC+ABAD+AE=BCDE (*)

Chứng minh tương tự ta cũng có:

Δ��′�ΔABD có ��AD // ��BC suy ra ��′�′�=����BCAB=BCAD (3)

Δ��′�ΔACE có ��AE // ��BC suy ra ��′�′�=����CBAC=BCAE (4)

Từ (3) và (4) ta có ��′�′�+��′��′=����+����=����BCAB+BCAC=BCAD+BCAE=BCDE (**)

Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′AMAM=BCDE=BCAB+BCAC (đpcm).

11 tháng 1 2024

Em xem lại đề bài xem đã đăng đúng và đủ chưa em nhé!