Để diện tích hình vuông tăng lên 44% thì chiều dài cạnh hình vuông cần phải tăng lên bao nhiêu phần trăm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
29.(85 - 47) + 85.(47 - 29)
= 29.85 - 29.47 + 85.47 - 85.29
= -29.47 + 85.47
= 47.(-29 + 85)
= 56.47
= 2632
29.(85 - 47) + 85.(47 - 29)
= 29.85 - 29.47 + 85.47 - 85.29
= (29.85 - 29.85) + (85.47 - 29.47)
= 0 + 47.(85 - 29)
= 47.56
= 2632
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Δ���∽Δ���ΔAIE∽ΔACI (g.g) suy ra ����=����ACAI=AIAE hay ��2=��.��AI2=AE.AC (1)
Chứng minh tương tự:
Δ���∽Δ���ΔAIK∽ΔAKB (g.g) suy ra ����=����ABAK=AKAF hay ��2=��.��AK2=AB.AF (2)
Mà Δ���∽Δ���ΔABE∽ΔACF (g.g) suy ra ����=����ACAB=AFAE hay ��.��=��.��AB.AF=AC.AE (3)
Từ (1), (2) và (3) ta có ��2=��2AI2=AK2 suy ra ��=��AI=AK.
b) Vì �^=60∘A=60∘ suy ra �1^=30∘B1=30∘
Trong tam giác ���ABE vuông tại �E nên ��=12��,AE=21AB,
Trong tam giác ���AFC vuông tại �F có �1^=30∘C1=30∘ suy ra ��=12��AF=21AC.
Do đó, Δ���∽Δ���ΔAEF∽ΔABC (c.g.c).
suy ra ��������=(����)2=14SABCSAEF=(ABAE)2=41.
Vậy ����=14.120=30SAEF=41.120=30 cm22.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nữa chu vi hình chữ nhật là:
128 : 2 = 64 (cm)
Chiều dài của hình chữ nhật là:
(64 + 12) : 2 = 38 (cm)
Chiều rộng của hình chữ nhật là:
38 - 12 = 26 (cm)
Diện tích của hình chữ nhật là:
38 x 26 = 988 (cm2)
Đáp số: ...
Nửa chu vi của hình chữ nhật đó là:
\(128:2=64\left(cm\right)\)
Chiều dài của hình chữ nhật đó là:
\(\left(64+12\right):2=38\left(cm\right)\)
Chiều rộng của hình chữ nhật đó là:
\(64-38=26\left(cm\right)\)
Diện tích của hình chữ nhật đó là:
\(38\times26=988\left(cm^2\right)\)
Đáp số: \(988cm^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ��BF cắt ��DC tại �K, ��BE cắt ��DC tại �I, và ��EF cắt ��AB tại �G.
Δ���ΔFAB có ��DK // ��AB suy ra ����=����ABDK=FAFD (1)
Δ���ΔFAG có ��DH // ��AG suy ra ����=����AGDH=FAFD (2)
Từ (1) và (2) suy ra ����=����ABDK=AGDH hay ����=����DHDK=AGAB (*)
Tương tự Δ���ΔEIC có ��AB // ��IC suy ra ����=����ABIC=EAEC (3)
Δ���ΔEHC có ��HC // ��AB suy ra ����=����AGHC=EAEC (4)
Từ (3) và (4) ta có ����=����ABIC=AGHC hay ����=����HCIC=AGAB (**)
Từ (*) và (**) ta có ����=����DHDK=HCIC.
Mà ��=��DH=HC (gt) suy ra ��=��DK=IC
Mặt khác ��=��BD=BC (gt) nên Δ���ΔBDC cân
Suy ra ���^=���^BDK=BCI
Vậy Δ���=Δ���ΔBDK=ΔBCI (c.g.c)
Suy ra ���^=���^DBK=CBI.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
![](https://rs.olm.vn/images/avt/0.png?1311)
3n là bội của n+3
=> 3n chia hết cho (n+3)
=> 3(n+3)-9 chia hết cho (n+3)
=> 9 chia hết cho (n+3)
=> n+3 thuộc Ư(9)
Với n là số nguyên dương
=> n+3 >= 4 và n+3 nguyên
Do đó n+3 = 9
=> n=6
3N là bội của N + 3
⇒ 3N ⋮ N + 3
⇒ 3N + 9 - 9 ⋮ N + 3
⇒ 3(N + 3) - 9 ⋮ N + 3
⇒ 9 ⋮ N + 3
⇒ N + 3 ∈ Ư(9) = {1; -1; 3; -3; 9; -9}
⇒ N ∈ {-2; -4; 0; -6; 6; -12}
Mà N là số nguyên dương nên N = 6
Vậy: ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Qua �A vẽ đường thẳng song song với ��BC cắt ��′BB′ tại �D và cắt ��′CC′ tại �E.
Khi đó
Δ���ΔAME có ��AE // �′�A′C suy ra ���′�=���′�A′MAM=A′CAE (1)
Δ���ΔAMD có ��AD // �′�A′B suy ra ���′�=���′�A′MAM=A′BAD (2)
Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=����A′MAM=A′CAE=A′BAD=A′C+A′BAD+AE=BCDE (*)
Chứng minh tương tự ta cũng có:
Δ��′�ΔAB′D có ��AD // ��BC suy ra ��′�′�=����B′CAB′=BCAD (3)
Δ��′�ΔAC′E có ��AE // ��BC suy ra ��′�′�=����C′BAC′=BCAE (4)
Từ (3) và (4) ta có ��′�′�+��′��′=����+����=����B′CAB′+BC′AC′=BCAD+BCAE=BCDE (**)
Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′A′MAM=BCDE=B′CAB′+BC′AC′ (đpcm).
Qua �A vẽ đường thẳng song song với ��BC cắt ��′BB′ tại �D và cắt ��′CC′ tại �E.
Khi đó
Δ���ΔAME có ��AE // �′�A′C suy ra ���′�=���′�A′MAM=A′CAE (1)
Δ���ΔAMD có ��AD // �′�A′B suy ra ���′�=���′�A′MAM=A′BAD (2)
Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=����A′MAM=A′CAE=A′BAD=A′C+A′BAD+AE=BCDE (*)
Chứng minh tương tự ta cũng có:
Δ��′�ΔAB′D có ��AD // ��BC suy ra ��′�′�=����B′CAB′=BCAD (3)
Δ��′�ΔAC′E có ��AE // ��BC suy ra ��′�′�=����C′BAC′=BCAE (4)
Từ (3) và (4) ta có ��′�′�+��′��′=����+����=����B′CAB′+BC′AC′=BCAD+BCAE=BCDE (**)
Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′A′MAM=BCDE=B′CAB′+BC′AC′ (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
Em xem lại đề bài xem đã đăng đúng và đủ chưa em nhé!
Diện tích hình vuông lúc sau bằng:
100% + 44% = 144% (diện tích hình vuông lúc đầu)
144 = 12 x 12
Vậy cạnh hình vuông cần tăng lên: 12%
Đáp số: 12%