Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+x+2=y^3-3y^2+4y\\2\sqrt{x+2}=y+2\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}x>-2\\y>-2\end{matrix}\right.\)
Có : x3 + x + 2 = y3 - 3y2 + 4y
<=> x3 + x + 2 = (y3 - 3y2 + 3y - 1) + y + 1
<=> x3 + x + 2 = (y - 1)3 + y + 1
<=> x3 - (y - 1)3 + x - y + 1 = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2] + (x - y + 1) = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2 + 1] = 0
<=> x - y + 1 = 0 (Vì x2 + x(y - 1) + (y - 1)2 + 1 > 0 \(\forall x;y\) )
<=> y = x + 1
Thay y = x + 1
\(2\sqrt{x+2}=y+2\)
\(\Leftrightarrow2\sqrt{x+2}=x+3\)
\(\Leftrightarrow x-2\sqrt{x+2}+3=0\)
\(\Leftrightarrow(\sqrt{x+2}-1)^2=0\)
\(\Leftrightarrow\sqrt{x+2}=1\)
\(\Leftrightarrow x=-1\) (tm)
Khi đó y = 0
Vậy (x;y) = (-1;0)
Cho tam giác ABC vuông tại A, đường cao AH. Trên BC lấy điểm M sao cho H là trung điểm của đoạn thẳng BM. AC cắt đường tròn đường kính CM tại E, EM cắt đường tròn tâm O đường kính BC tại F. Iva A name and mat phon
a) Chứng minh rằng AB // MF.
doi nhau. M và BC
b) Chứng minh rằng tứ giác ABFM là hình thoi. c) Kéo dài AM cắt đường tròn đường kính MC tại I (I +M)
Chứng minh rằng:AI. BO =AH.AC
Một người chạy bộ từ A với vận tốc 8 km/h và người đi xe đạp từ B với vận tốc 20 km/h hẹn nhau cùng đến địa điểm C nằm giữa quãng đường AB để ngắm bình minh, biết mặt trời nhô lên khỏi đỉnh núi nơi họ hẹn lúc 6h15 phút. Hỏi để cùng nhau ngắm nhìn khoảnh khắc đó hai người phải cùng xuất phát lúc mấy giờ, biết quãng đường AB dài 14 km.
Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn tâm O lấy điểm C, tên cung BC lấy điểm D, vẽ đường thẳng D vuông góc với AB tại B. Các đường thẳng AC và AD cắt D lần lượt tại E và F. CMR:
a) Tg CDFE nội tiếp.
b) Gọi I là trung điểm của BF. C/m: ID là tiếp tuyến của nửa đường tròn đã cho.
c) Đường thẳng CD cắt đường thẳng D tại K, tia phân giác goc CKE cắt AE và AF lần lượt tại M và N.C/m: Tam giác AMN cân.
mình cần gấp nha
haha
Từ 1 điểm A nằm bên ngoài đường tròn (O) vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng: a) AH vuông góc BE b) MD^2=MB.ME
cho (O) và 2 đường kính AB và CD vuông góc với nhau. Trên cung BD lấy 1 điểm M. Tiếp tuyến của (O) tại M cắt AB ở E; CM cắt AB tại F . Chứng minh EF = EM
ĐKXĐ : \(\left\{{}\begin{matrix}x>-2\\y>-2\end{matrix}\right.\)
Có : x3 + x + 2 = y3 - 3y2 + 4y
<=> x3 + x + 2 = (y3 - 3y2 + 3y - 1) + y + 1
<=> x3 + x + 2 = (y - 1)3 + y + 1
<=> x3 - (y - 1)3 + x - y + 1 = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2] + (x - y + 1) = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2 + 1] = 0
<=> x - y + 1 = 0 (Vì x2 + x(y - 1) + (y - 1)2 + 1 > 0 \(\forall x;y\) )
<=> y = x + 1
Thay y = x + 1
\(2\sqrt{x+2}=y+2\)
\(\Leftrightarrow2\sqrt{x+2}=x+3\)
\(\Leftrightarrow x-2\sqrt{x+2}+3=0\)
\(\Leftrightarrow(\sqrt{x+2}-1)^2=0\)
\(\Leftrightarrow\sqrt{x+2}=1\)
\(\Leftrightarrow x=-1\) (tm)
Khi đó y = 0
Vậy (x;y) = (-1;0)