(\(\frac{2+x}{2-x}\)---\(\frac{4x^{^2}}{x^{^2^{ }}-4}\)-\(\frac{2-x}{2+x}\)) :\(\frac{x^{^2}-3x}{2x^{^2}-x^{^3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{4x-8}{2x^2+1}=0\)
<=> \(\frac{4\left(x-2\right)}{2x^2+1}=0\)
<=> 4(x - 2) = 0
<=> x - 2 = 0
<=> x = 2
2) \(\frac{x^2-x-6}{x-3}=0\)
<=> \(\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
<=> x + 2 = 0
<=> x = -2
3) xem ở đây Câu hỏi của Vương Thanh Thanh
4) \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
<=> \(\frac{12}{\left(1+3x\right)\left(1-3x\right)}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
<=> 12 = (1 - 3x)2 - (1 + 3x2)
<=> 12 = 1 - 6x + 9x2 - 1 - 6x - 9x2
<=> 12 = -12x
<=> x = -1
5) ĐKXĐ: \(x\ne1,x\ne3\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
<=> \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 5)(x - 3) = (x + 1)(x - 1) - 8
<=> x2 - 3x + 5x - 15 = x2 - x + x - 1 - 8
<=> x2 + 2x - 15 = x2 - 9
<=> x2 + 2x - 15 - x2 = -9
<=> 2x - 15 = -9
<=> 2x = -9 + 15
<=> 2x = 6
<=> x = 3 (ktm)
=> pt vô nghiệm
6) ĐKXĐ: \(x\ne\pm2\)
\(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\)
<=> \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{\left(x-2\right)\left(x+2\right)}+1\)
<=> (x + 1)(x + 2) - 5(x - 2) = 12 + (x - 2)(x + 2)
<=> x2 + 2x + x + 2 - 5x + 10 = 12 + x2 + 2x - 2x - 4
<=> x2 - 2x + 12 = x2 + 8
<=> x2 - 2x + 12 - x2 = 8
<=> -2x + 12 = 8
<=> -2x = 8 - 12
<=> -2x = -4
<=> x = 2 (ktm)
=> pt vô nghiệm
\(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
\(\Rightarrow\frac{x^2+5}{x^3-3x-2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
Đồng nhất hệ số, ta có :
\(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
\(\frac{1}{x+3}+\frac{8}{\left(x-1\right)\left(x-3\right)}=\frac{x+3}{x^2-2x=3}\)
\(\Leftrightarrow\frac{1}{x+3}+\frac{8}{\left(x-1\right)\left(x-3\right)}=\frac{x+3}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+1\right)+8\left(x+3\right)\left(x+1\right)=\left(x+3\right)^2\left(x-1\right)\)
\(\Leftrightarrow x^3+5x^2+31x+27=x^3+5x^2+3x-9\)
\(\Leftrightarrow5x^2+31x+27=5x^2+3x-9\)
\(\Leftrightarrow31x+27=3x-9\)
\(\Leftrightarrow31x+27-3x=-9\)
\(\Leftrightarrow28x+27=-9\)
\(\Leftrightarrow28x=-36\)
\(\Leftrightarrow x=\frac{-36}{28}=-\frac{9}{7}\)
Vậy \(x=-\frac{9}{7}\)
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(ĐKXĐ:x\ne\pm2\)
\(A=\left(\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(=\frac{-2\left(x-2\right)}{x+2}=\frac{4-2x}{x+2}\)
\(ĐKXĐ:x\ne\pm2;x\ne0\)
\(A=\left(\frac{2}{2+x}-\frac{4}{x^2+4x +4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left(\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(A=\frac{4-2x}{x+2}\)
Bài làm
a) Vì \(\widehat{AMN}=\widehat{ABC}\)( gt )
Mà hai góc này đồng vị
=> MN // BC
Xét tam giác ABC có:
Theo hệ quả của định lí Thales cóL
\(\frac{MN}{BC}=\frac{AN}{AC}\)
hoặc\(\frac{6}{15}=\frac{AN}{NC+NA}\)
hay \(\frac{6}{15}=\frac{AN}{6+AN}\)
=> 36 + 6AN = 15AN
=> 6AN - 15AN = -36
=> AN( 6 - 15 ) = -36
=> AN . ( -9 ) = - 36
=> AN = 4
Vậy AN = 4 cm