Tìm giá trị của x để biểu thức
Q=-5 căn x +2 phần căn x +3 < hoặc = 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A học đại học rồi mà vẫn hỏi câu lp 9 ak
đề thấy có chút thiếu dữ liệu câu đầu ấy
mỗi đội đều chơi 9 trận với 9 đội khác và không có trận hòa
Do đó : x1 + y1 = x2 + y2 = .... = x10 + y10
Ta có : ( x12 + x22 + ... + x102 ) - ( y12 + y22 + ... + y102 )
= ( x12 - y12 ) + ( x22 - y22 ) + ... + ( x102 - y102 )
= 9 ( x1 - y1 + x2 - y2 + ... + x10 - y10 )
= 9 [ ( x1 + x2 + .... + x10 ) - ( y1 + y2 +...+ y10 ) ]
= 9 . 0
= 0
Vậy ....
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^2+b^2+1^2\right)\left(1^2+1^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{1+a^2+b^2}=\frac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}\le\frac{2+c^2}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{1+b^2+c^2}=\frac{1+1+a^2}{\left(1+b^2+c^2\right)\left(1+1+a^2\right)}\le\frac{2+a^2}{\left(a+b+c\right)^2}\)
\(\frac{1}{1+c^2+a^2}=\frac{1+1+b^2}{\left(1+c^2+a^2\right)\left(1+1+b^2\right)}\le\frac{2+b^2}{\left(a+b+c\right)^2}\)
Cộng từng vế BĐT lại, ta được :
\(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\le\frac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{6+a^2+b^2+c^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)
Vậy BĐT đã được chứng minh