Bài 1: Cho tam giác ABC có đường cao AH. Gọi D là điểm đối xứng của H qua trung
điểm M của AB.
a) Chứng minh rằng ADBH là hình chữ nhật.
b) Tìm điều kiện của tam giác ABC để ADBH là hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = a
<=> a2 + 3xa + 2x2 = 0
<=> a2 + 2ax + ax + 2x2 = 0
<=> (a + x)(a + 2x) = 0
<=> (x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
<=> (x2 + 5x + 8)(x2 + 6x + 8) = 0
<=> x2 + 4x + 2x + 8 = 0 (vì x2 + 5x + 8 = (x2 + 5x + 6,25) + 1,75 = (x + 2,5)^2 + 1,75 > 0)
<=> (x + 4)(x + 2) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=-2\end{cases}}\)
Vậy S = {-4; -2}
+ Trích 4 chất trên thành 4 mẫu thử nhỏ, đánh số
+ Cho H2O lần lượt vào 4 mẫu thử, quan sát:
. . . . . Mẫu thử nào không có hiện tượng gì là SiO2SiO2. Ta nhận ra được SiO2SiO2.
. . . . . Ba mẫu thử còn lại tan ra là BaO, P2O5 và Na2O
BaO+H2O−−−>Ba(OH)2BaO+H2O−−−>Ba(OH)2
P2O5+3H2O−−−>2H3PO4P2O5+3H2O−−−>2H3PO4
Na2O+H2O−−−>2NaOHNa2O+H2O−−−>2NaOH
+ Cho quỳ tím lần lượt vào 3 dung dịch thu được ở trên, quan sát:
. . . . . Mẫu thử nào làm quỳ tím hóa đỏ là H3PO4H3PO4 , vậy chất ban đầu là P2O5P2O5. Ta nhận ra được P2O5P2O5.
. . . . . Hai mẫu thử còn lại làm quỳ tím hóa xanh là Ba(OH)2Ba(OH)2 và NaOHNaOH=> Chất ban đầu là BaOBaO và Na2ONa2O.
+ Cho axit sunfuric H2SO4H2SO4 lần lượt vào hai mẫu thử còn lại:
. . . . . Mẫu thử nào thấy xuất hiện kết tủa trắng và tỏa nhiều nhiệt là BaSO4BaSO4 => Chất ban đầu là BaOBaO. Ta nhận ra được BaOBaO
BaO+H2SO4−−−>BaSO4+H2OBaO+H2SO4−−−>BaSO4+H2O
. . . . . Mẫu thử còn lại là Na2ONa2O
Vậy ta đã nhận ra được các chất trên
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow P< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P< 1-\frac{1}{100}\)
\(\Rightarrow P< \frac{99}{100}< 1\)
\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}\)
\(P=1-\frac{1}{100}< 1\)
Vậy : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)
e sẽ cố gắng !!!
\(3x-15=2x\left(x-5\right)\)
\(3x-15=2x^2-10x\)
\(3x-15-2x^2+10x=0\)
\(13x-15-2x^2=0\)
\(x\left(13-2x\right)-15=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(f,x\left(2x-7\right)-4x+14=0\)
\(2x^2-7x-4x+14=0\)
\(2x^2-11x+14=0\)
\(x\left(2x-11\right)=-14\)
\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)
A B H C D M
a, xét tứ giác DAHB có : M là trung điểm của AB (Gt)
H đối xứng với D qua M (gt) => M là trung điểm của HD (đn)
=>DAHB là hình bình hành (dh)
có : ^AHB = 90 do AH _|_ BC (gt)
=> DAHB là hình chữ nhật (dh(
b, DAHB là hình chữ nhật
để DAHB là hình vuông
<=> AH = BH (dh)
<=> tam giác AHB cân tại H (đn)
có ^AHB = 90 (câu a)
<=> tam giác AHB vuông cân tại H
<=> ^ABH = 45
mà tam giác ABC cân tại A (gt)
<=> tam giác ABC vuông cân tại A