Tìm GTNN của \(E=\frac{x}{\left(x+2010\right)^2}\)
Giúp với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x (cm)là chiều dài ban đầu của hcn
y (cm) là chiều rômgj ban đầu của hcn
...CV=70 \(2\left(x+y\right)=70\Rightarrow x+y=35\left(1\right)\)
nếu chiều dài tăng.......tăng thêm 14 \(\Rightarrow PT:\left(x+3\right)\left(y-2\right)=xy+14\left(2\right)\)
từ (1) và(2) ta có hệ pt:\(\hept{\begin{cases}x+y=35\\\left(x+3\right)\left(y-2\right)=xy+14\end{cases}}\)
bạn tính đc X=17 và Y=18 .sau đó kết luận là đc ><
cái này lớp 4 còn học rùi mà ha tung lam lớp 9 còn ko làm được
Đk: x, y khác 0
Đặt: \(\frac{1}{x}=u;\frac{1}{y}=v\)
ta có hệ phương trình:
\(\hept{\begin{cases}u-v=1\\2u+4v=5\end{cases}}\)Giải u; v sau đó tìm x, y.
\(0\le x,y,z\le1\Rightarrow x^{10}\le x;y^6\le y;z^{2016}\le z;0\le xyz\le1\)
CÓ: \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)
=>\(1-xyz+\left(xy+yz+zx\right)-\left(x+y+z\right)\ge0\)
=>\(x+y+z-xy-yz-zx-xyz\le1\)
=>\(x^{10}+y^6+z^{2016}-xy-yz-zx\le1\)
Dấy "=" xảy ra <=> trong 3 số x,y,z có 1 số bằng 0, 2 số bằng 1 hoặc 1 số bằng 1, 2 số bằng 0
Đặt \(t=\frac{1}{x+2010}\Rightarrow x=\frac{1}{t}-2010\)
Ta có: \(E=x\cdot\frac{1}{\left(x+2010\right)^2}=\left(\frac{1}{t}-2010\right)t^2=t-2010t^2\)
\(=-2010\left(t^2-t\cdot\frac{1}{2010}\right)=-2010\left(t^2-2t\cdot\frac{1}{4020}+\frac{1}{4020^2}\right)+\frac{1}{8040}\)
\(=-2010\left(t-\frac{1}{4020}\right)^2+\frac{1}{8040}\le\frac{1}{8040}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{4020}\Leftrightarrow x=2010\)