K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Gọi x là số ngày đội 1 làm 1 mình hoàn thành công việc (x>12) 

y là số ngày đội 2 làm 1 mình hoàn thành công việc (y>12) 

Mỗi ngày, đội 1 làm được \(\frac{1}{x}\)(công việc)

                đội 2 làm được \(\frac{1}{y}\) (công việc)

Hai đội làm chung trong 12 ngày thì xong công việc nên mỗi ngày 2 đội cùng làm được \(\frac{1}{12}\) (công việc), ta có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\left(1\right)\)

Hai đội làm chung trong 8 ngày nên được \(8\left(\frac{1}{x}+\frac{1}{y}\right)\) (công việc) . Đội 1 làm tiếp hết 7 ngày thì xog nên trong 7 ngày đội 1 làm được \(7\cdot\frac{1}{x}\) (công việc)

Ta có pt: \(8\left(\frac{1}{x}+\frac{1}{y}\right)+7\cdot\frac{1}{x}=1\Leftrightarrow\frac{15}{x}+\frac{8}{y}=1\left(2\right)\)

Từ (1) và (2) ta có hệ: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{15}{x}+\frac{8}{y}=1\end{cases}}\)

Đặt \(\frac{1}{x}=u;\frac{1}{y}=v\)

Khi đó, hpt trở thành \(\hept{\begin{cases}u+v=\frac{1}{12}\\15u+8v=1\end{cases}}\)

Giải đc u=1/21,v=1/28

=> x=21,y=28 (TMĐK)

Vậy...

21 tháng 2 2020

Gọi chữ số hàng chục của số cần tìm là x,chữ số hàng đơn vị là y \(\left(x,y\in N;0< x,y\le9\right)\)

Vì 2 lần cs hàng chục lớn hơn 5 lần cs hàng đơn vị là 1 nên ta có: 2x-5y=1 (1)

Cs hàng chục chia cho cs hàng đơn vị được thương là 2,dư 2. Ta có pt: x=2y+2 <=> x-2y=2 (2)

Từ (1),(2) ta có hpt: \(\hept{\begin{cases}2x-5y=1\\x-2y=2\end{cases}}\)

Giải hệ ta đc: x=8,y=3 (TMĐK)

Vậy số cần tìm là 83

21 tháng 2 2020

hpt có nghiệm (3;-2) => x=3;y=-2

Thay vào hệ, ta có: \(\hept{\begin{cases}3a-2b=3\\6a+6b=36\end{cases}\Leftrightarrow\hept{\begin{cases}3a-2b=3\\a+b=6\end{cases}}}\)

Đến đây tự giải dc rồi

\(\Rightarrow x-3⋮x^2+1\)

\(\Rightarrow\left(x+3\right)\left(x-3\right)⋮x^2+1\)

\(\Rightarrow x^2-9⋮x^2+1\)

mà \(x^2+1⋮x^2+1\)

\(\Rightarrow x^2-9-x^2-1⋮x^2+1\Rightarrow10⋮x^2+1\)

Xét từng TH ra

P/s : x2+1 lẻ

8 tháng 1 2021

Gọi số chính phương cần tìm là \(\overline{abcd}\left(0\le b,c,d\le9;1\le a\le9;a,b,c,d\inℕ\right)\)

Ta dễ có: \(1000\le\overline{abcd}\le9999\Rightarrow\sqrt{1000}\le\sqrt{\overline{abcd}}\le\sqrt{9999}\Rightarrow32\le\sqrt{\overline{abcd}}\le99\)suy ra căn bậc hai của số \(\overline{abcd}\)là số tự nhiên có hai chữ số.

Đặt \(\sqrt{\overline{abcd}}=\overline{mn}\left(m,n\inℕ;0\le n\le9;3\le m\le9\right)\)

Theo đề thì chữ số hàng đơn vị của số cần tìm là số nguyên tố nên \(d\in\left\{2;3;5;7\right\}\)mà số chính phương không có tận cùng bằng \(\left\{2;3;7\right\}\)nên d = 5 do đó n = 5 (Vì số chính phương có tận cùng bằng 5 thì căn bậc hai của nó cũng tận cùng bằng 5)

Lúc này ta được: \(\sqrt{\overline{abc5}}=\overline{m5}\)

Ta có đánh giá quen thuộc rằng số chính phương chia 3 thì hoặc dư 0 hoặc dư 1 do đó \(m+5\)chia 3 dư 0 hoặc dư 1 (theo đề thì căn bậc hai của số cần tìm có tổng các chữ số là số chính phương)

Xét từng trường hợp thì \(\overline{m5}\in\left\{45;55;75;85\right\}\)nhưng chỉ có số 45 có tổng các chữ số là số chính phương (9) nên ta chọn số 45\(\Rightarrow\overline{abcd}=45^2=2025\)

Vậy số chính phương có 4 chữ số cần tìm là 2025

21 tháng 2 2020

Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)

\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)

Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)

Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)

\(=m^2-2m+1+m^2+4m+4\)

\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)

\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2