cho biểu thức \(A=\left(\frac{x+2}{x+1}+\frac{2x}{2-x}+\frac{x^2+4x+6}{x^2-x-2}\right)\div\frac{x^2+1}{2x^2-4x}\)
a) rút gọn a
b) tìm giá trị lớn nhất của a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí : Trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực , đường cao.
=> AB= AC = 20cm AD vuông góc với BC và BD = CD
Vì BD + CD = BC BD + CD = 5cm
Mà BD = CD = 5/2 = 2,5 cm
Áp dụng định lí Py ‐ ta ‐ go cho tam giác vuông ABD có :
AB 2 = BD 2 + AD 2
=> 20 2 = BD 2 + 2,5 2
=> 400 = BD 2 + 6,25
=> BD 2 = 400 ‐ 6,25 = 393,75
=> BD = căn 393 ,75
#Học tốt#
\(a,x^3+8=x^2-4\)
\(x^3+12-x^2=0\)
\(\left(x+2\right)\left(x^2-3x+6\right)=0\)
\(x=2;x^2-3x=6\)
\(x\left(x-3\right)=6\)
\(x=6;9\)
ko bt cách lm chỉ bt thử nghiệm thui ==
Bài 2 Với giá trị nào của m thì phương trình :
(m+5).x-2m.(x-1)=4
Gỉa sử m=1
\(\Rightarrow\left(1+5\right)x-2\left(1-1\right)=4\)
\(\Rightarrow6x-0=4\)
\(\Rightarrow6x=4\)
\(\Rightarrow x=\frac{2}{3}\)( tm )
từ từ đổi may lm nốt :v
x^5- 1/ x-1= x^4+ x^3+ x^2+ x+ 1
<=> x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)
<=> x^5 - 1 = x^5 + x^4 + x^3 + x^2 + x - x^4 - x^3 - x^2 - x - 1
<=> x^5 - 1 = x^5 - 1 (đúng)
=> đpcm
Viết lại cho vui ạ:))
\(\dfrac{x^5-1}{x-1}=x^4+x^3++x^2+x+1\\ \Leftrightarrow x^5-1=\left(x-1\right)\left(x^4+x^3+x+1\right)\\ \Leftrightarrow x^5-1=x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1\\ \Leftrightarrow x^5-1=x^5-1\left(đpcm\right)\)
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.