Cho 3 số thực dương x,y,z thỏa mãn x+y+z=3.
CMR: \(\frac{x}{x+\sqrt{3x+yz}}\) + \(\frac{y}{y+\sqrt{3y+zx}}\) + \(\frac{z}{z+\sqrt{3z+xy}}\)\(\le\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có :
\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\forall x\)
\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=4\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\Leftrightarrow\hept{\begin{cases}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4=2}\\3-\left(x-1\right)^2=3\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất là x = 1
Cho x = 0 thì y = 0. Ta có : O(0;0)
Cho x = 1 thì y = 1. Ta có: A(1;1)
Đồ thị hàm số y = x đi qua O và A.
* Vẽ đồ thị hàm số y = 0,5x
Cho x = 0 thì y = 0.Ta có : O(0;0)
Cho x = 2 thì y = 1. Ta có : B(2;1)
Đồ thị hàm số y = 0,5x đi qua O và B .
b) Qua điểm C trên trục tung có tung độ bằng 2, kẻ đường thẳng song song với Ox
cắt đồ thị hàm số y = x tại D , cắt đồ thị hàm số y = 0,5x tại E.
Điểm D có tung độ bằng 2.
Thay giá trị y = 2 vào hàm số y = x ta được x = 2
QUẢNG CÁO
Vậy điểm D(2;2)
Điểm E có tung độ bằng 2.
Thay giá trị y = 2 vào hàm số y = 0,5x ta được x = 4.
Vậy điểm E(4;2)
Gọi D’ và E’ lần lượt là hình chiều của D và E trên Ox.
Ta có: OD’ = 2, OE’ = 4.
Áp dụng định lý Pi-ta-go vào tam giác vuông ODD’, ta có:
OD2=OD‘2+DD‘2=22+22=8OD2=OD‘2+DD‘2=22+22=8
Suy ra: OD=√8=2√2OD=8=22
Áp dụng định lý Pi-ta-go vào tam giác vuông OEE’, ta có:
OE2=OE‘2+EE‘2=42+22=20OE2=OE‘2+EE‘2=42+22=20
Suy ra: OE=√20=2√5OE=20=25
Lại có: DE=CE–CD=4–2=2DE=CE–CD=4–2=2
Chu vi tam giác ODE bằng:
\(\eqalign{
& OD + DE + EO \cr
& = 2\sqrt 2 + 2 + 2\sqrt 2 \cr
& = 2\left( {\sqrt 2 + 1 + \sqrt 5 } \right) \cr} \)
Diện tích tam giác ODE bằng: 12DE.OC=12.2.2=2
um, bạn chỉ lại cho mình câu a đi, sao mình thấy nó sai sai sao á, liên quan gì hai cái phương trình đường thẳng ở trên đâu?
Sao mà bạn cho x= 0 rồi =1 tùm lum vậy? Đồ thị y=x ở đâu ra vậy?
Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)
=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)
=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1