K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

 

A'q

22 tháng 9 2023

Asqwoiewoirewn9r9wer9we9r9ewr89ew8r90we8r

s

22 tháng 9 2023

a, \(\dfrac{2^3-x^3}{x\left(x^2+2x+4\right)}\) = \(\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}\) = \(\dfrac{2-x}{x}\)=\(\dfrac{x-2}{-x}\)(đpcm)

22 tháng 9 2023

b, \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}\) (\(x\) \(\ne\) \(\pm\) y)

\(\dfrac{-3x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x\left(y-x\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x}{x+y}\) (đpcm)

22 tháng 9 2023

A B C D M N P

a/

Ta có

BC//AD (cạnh đối hình bình hành) => BM//AD

\(\Rightarrow\dfrac{BM}{AD}=\dfrac{MN}{AN}\) (Hệ quả định lý Talet) (1)

BC//AD => CM//AP

\(\Rightarrow\dfrac{CM}{AP}=\dfrac{MN}{AN}\) (Hệ quả định lý Talet) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{BM}{AD}=\dfrac{CM}{AP}\) Mà BM=CM (gt)

=> AP=AD (đpcm)

b/

Ta có

BC//AD => BC//DP \(\Rightarrow\dfrac{BN}{DN}=\dfrac{CN}{PN}\) (Hệ quả định lý Talet)

\(\Rightarrow\dfrac{BN}{CN}=\dfrac{DN}{PN}=\dfrac{BN+DN}{CN+PN}=\dfrac{BD}{CP}=1\)

\(\Rightarrow DN=PN\) => tg DPN cân tại N \(\Rightarrow\widehat{CPD}=\widehat{BDP}\) (góc ở đáy tg cân)

Xét tg BDP  và tg CDP có

\(\widehat{CPD}=\widehat{BDP}\) (cmt)

CP=BD (gt)

DP chung

=> tg BDP = tg CDP (c.g.c) => BP=CD

Xét tứ giác BCDP có

BC//DP

BP=CD

=> tứ giác BCDP là hình thang cân \(\Rightarrow\widehat{BPD}=\widehat{CDP}\) (góc ở đáy hình thang cân)

Xét tg ABP và tg ACD có

BP=CD (cmt)

\(\widehat{BPD}=\widehat{CDP}\) (cmt)

AP=AD (cmt)

=> tg ABP = tg ACD (c.g.c) => AB=AC (đpcm)

 

 

 

Nếu bạn không có đáp án cho CH hoặc là không biết cách giải thì ĐỪNG bình luận những câu vô nghĩa vào CH.

21 tháng 9 2023

chịu :)))))))))

22 tháng 9 2023

A B C D E I F K G

a/

Xét tg BCD và tg CBD có

BD=CE (gt)

\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân ABC)

BC chung

=> tg BCD = tg CBD (c.g.c) => CD=BE (đpcm)

b/

tg BCD = tg CBD (cmt) \(\Rightarrow\widehat{IBC}=\widehat{ICB}\)

=> tg IBC cân tại I => IB=IC

Xét tg ABI và tg ACI có

IB=IC (cmt)

AI chung

AB=AC (cạnh bên tg cân ABC)

=> tg ABI = tg ACI (c.c.c) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)

=> AI là phân giác \(\widehat{A}\)

=> AI là trung trực của BC (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)

c/

Ta có

AD=AB-BD

AE=AC-CE

Mà AB=AC; BD=CE

=> AD=AE

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\) => DE//BC (Talet đảo trong tam giác)

d/

Từ E đựng đường thẳng // với AB cắt BC tại G

ta có

\(\widehat{EGC}=\widehat{ABC}\) (góc đồng vị)

Mà \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{EGC}=\widehat{ACB}\) => tg EGC cân tại E => GE=CE (cạnh bên tg cân)

Mà BD=CE (gt)

=> GE=BD mà BD=BF => GE=BF

Ta có 

GE//AB => GE//BF

=> BEGF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)

=> KE=KF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> K là trung điểm của EF

 

21 tháng 9 2023

A B C D E G F H

Xét tg ABC có

EF//AC  (gt) (1)

EA=EB (gt) 

=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC

\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)

Xét tg BCD chứng minh tương tự ta cũng có GC=GD

Xét tg ADC có

GF//AC (gt) (3)

GC=GD (cmt)

=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC

\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)

Từ (1) và (3) => EF//GH (cùng // với AC)

Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)

=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Gọi O là giao của AC và BD

Ta có

FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)

Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)

\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)

Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau

 

21 tháng 9 2023

a) Vì ABCD là hình bình hành (gt)

=> AB // CD (ĐN hình bình hành) 

     AB = CD (TC hình bình hành)

Vì M = AB/2 (M là trung điểm của AB)

     N = CD/2 (N là trung điểm của CD)

mà AB = CD (CMT)

=> M = N

=> AM // CN

=> Tứ giác AMCN là hình bình hành (DHNB hình bình hành)

 

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.