K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

\(VT=\sqrt{\left(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\right)^2}\)

\(\le\sqrt{3\left(x+y+z+3\right)}=\sqrt{\left[9-2\left(x+y+z\right)\right]+5\left(x+y+z\right)}\)

\(=\sqrt{\left[9-\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+5\left(x+y+z\right)}\le\sqrt{5\left(x+y+z\right)}=VP\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)

25 tháng 2 2020

Theo giả thiết \(2=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\Rightarrow x+y+z\ge\frac{9}{2}\)

\(\Rightarrow\frac{2}{3}\left(x+y+z\right)\ge3\)

\(VT=\sqrt{\left(\Sigma_{cyc}\frac{\sqrt{x+1}}{\sqrt{5\left(x+y+z\right)}}.\sqrt{5\left(x+y+z\right)}\right)^2}\le\sqrt{15\left(x+y+z\right)\left[\Sigma_{cyc}\frac{x+1}{5\left(x+y+z\right)}\right]}\)

\(=\sqrt{3\left(x+y+z+3\right)}\le\sqrt{3\left(x+y+z+\frac{2}{3}\left(x+y+z\right)\right)}=\sqrt{5\left(x+y+z\right)}=VP\)

15 tháng 5 2022

1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE   =    AF   =   BF   =   CE

∠FAB  = ∠B1   => AF//BE

2. (1,0 điểm)

Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF  nên tứ giác AEOF là hình thoi.

DOFN và DAFM có ∠FAE = ∠FOE  (2 góc đối của hình thoi)

∠AFM = ∠FNO  (2 góc so le trong)

=> ΔAFM đồng dạng với ΔONF (g-g)

⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON

3. (1,0 điểm)

Có ∠AFC = ∠ABC = 600  và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO

=> AO² = AM.MO

⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 =>  ΔAOM và  ΔONA đồng dạng.

=> ∠AOM = ∠ONA

Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp

26 tháng 2 2020

M làm được r

Ko cần nx

24 tháng 2 2020

Ai giúp mình với