Cho \(a^{^{ }3}-3ab^2=5\)và \(b^3-3a^2b=10\). Tính giá trị biểu thức \(P=a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(a^2-5a+2=0\Rightarrow a^2=5a-2\)
\(P=a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)
\(=a^5-a^4-18a^3+9a^2-5a+2017+\frac{\left(a^2-2\right)^2-36a^2}{a^2}\)
\(=a^5-a^4-18a^3+9a^2-5a+2015+2+\frac{\left(a^2-2\right)^2-\left(6a\right)^2}{a^2}\)
\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=0\times\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=0+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=2015+\frac{\left(5a-2-6a-2\right)\left(5a-2+6a-2\right)}{a^2}\)Vì \(a^2=5a-2\)
\(=2015+\frac{-\left(a+4\right)\left(11a-4\right)}{a^2}\)
\(=2015+\frac{-\left(a^2+40a-16\right)}{a^2}\)
\(=2015+\frac{-\left[a^2+8\left(5a-2\right)\right]}{a^2}\)Vì \(a^2=5a-2\)
\(=2015+\frac{-\left(a^2+8a^2\right)}{a^2}\)
\(=2015+\frac{-9a^2}{a^2}\)
\(=2015+\frac{-9}{1}\)
\(=2015-9\)
\(=2006\)
Cre:hoidap247
\(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2+x-1\) (dư \(a+2\))
Để đa thức chia hết \(\Leftrightarrow a+2=0\Leftrightarrow a=-2\)
a) Điều kiện: \(x\ne\pm1\)
\(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)
\(B=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}-\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{-4}{\left(x-1\right).\left(x+1\right)}\)
\(B=\frac{x^2-x-x+1-x^2-x-x-1+4}{\left(x-1\right).\left(x+1\right)}\)
\(B=\frac{-4x+4}{\left(x-1\right).\left(x+1\right)}=\frac{-4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}=\frac{-4}{x+1}\)
b) \(x^2-x=0\Leftrightarrow x.\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Khi \(x=0\Leftrightarrow\frac{-4}{0-1}=\frac{-4}{-1}=4\)
Khi \(x=1\Leftrightarrow\frac{-4}{1-1}=0\)
c) \(\frac{-4}{x+1}=-3\Leftrightarrow-3.\left(x+1\right)=-4\Leftrightarrow x+1=\frac{4}{3}\Leftrightarrow x=\frac{1}{3}\)
Ta có:\(\left(a^3-3ab^2\right)^2=5^2\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=10^2\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=100\)
\(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2=25+100\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4+a^6-6a^2b^4+9a^4b^2=125\)
\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=5^3\)
\(\Leftrightarrow a^2+b^2=5\)
\(\)