Phân tích đa thức sau thành nhân tử: (3x^2-4x-13)^2 - (4x^2-9)^2 - (x+2)^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)
\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)
\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)
\(=2.6^2-6.12=0\)
Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)
Em mới học lớp 6 có gì sai sót mong anh chỉ bảo !
\(\frac{x-7}{x^2+1}=\frac{x+6}{x^2+x+1}\)
\(\Leftrightarrow\frac{x-7}{x^2+1}=\frac{x+6}{x^2+x+1},x\inℝ\)
\(\Leftrightarrow\left(x-7\right).\left(x^2+x+1\right)=\left(x+6\right).\left(x^2+1\right)\)
\(\Leftrightarrow\left(x-7\right).\left(x^2+x+1\right)-\left(x+6\right).\left(x^2+1\right)=0\)
\(\Leftrightarrow x^3+x^2+x-7.x^2-7.x-7-\left(x^3+x+6.x^2+6\right)=0\)
\(\Leftrightarrow x^3+x^2+x-7.x^2-7.x-7-x^3-x-6.x^2-6=0\)
\(\Leftrightarrow-12.x^2-7.x-13=0\)
\(\Leftrightarrow12.x^2+7.x+13=0\)
\(\Leftrightarrow x=\frac{-7\pm\sqrt{7^2-4.12.13}}{2.12}\)
\(\Leftrightarrow x=\frac{-7\pm\sqrt{49-624}}{24}\)
\(\Leftrightarrow x=\frac{-7\pm\sqrt{-575}}{24}\)
Vậy x \(\notinℝ\)
=\(\left(3x^2-4x-13-4x^2+9\right)\left(3x^2-4x-13+4x^2-9\right)-\left(x+2\right)^4\)
=\(\left(-x^2-4x-4\right)\left(7x^2-4x-22\right)-\)\(\left(x+2\right)^{^{ }2.2}\)
=\(-\left(x+2\right)^2\left(7x^2-4x-22\right)-\left(x+2\right)^2\left(x+2\right)^2\)
=\(-\left(x+2\right)^2\)\(\left(7x^2-4x-22-x^2-4x-4\right)\)
\(-\left(x+2\right)^2\)(\(6x^2-8x-26\))