- Cho tam giác ABC vuông tại A, AB= a (a>0 cho trước) góc ABC=60độ
- a) Tính a theo độ dài các cạnh AC, BC
- b) Kẻ đường cao AH của tam giác ABC. Tính BH, HC theo a
- c)Tính sinC, suy ra độ dài đường cao AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\left(-\sqrt{7}\right)+\left(-\sqrt{5}\right)\right)\cdot\frac{\sqrt{7}-\sqrt{7}}{1}\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\cdot\frac{\sqrt{7}-\sqrt{5}}{1}\)
\(=\frac{-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{1}\)
\(=\frac{-\left(7-5\right)}{1}=-2\)
A B C H D O E F K G I
Đặt G là trung điểm HC, DG cắt HE tại I.
Dễ thấy \(\Delta\)AHB ~ \(\Delta\)CHD (g.g) với trung tuyến tương ứng BK,DG. Suy ra \(\Delta\)BHK ~ \(\Delta\)DHG (c.g.c)
Suy ra ^HBK = ^HDG = ^HDI (1)
Áp dụng ĐL Melelaus cho \(\Delta\)GCD và 3 điểm E,I,H có \(\frac{ED}{EC}.\frac{IG}{ID}.\frac{HC}{HG}=1\)
Bởi vì \(\frac{ED}{EC}=\frac{1}{2};\frac{HC}{HG}=2\)nên \(\frac{IG}{ID}=1\)hay I là trung điểm GD
Ta thấy \(\Delta\)DGH vuông tại H có trung tuyến HI nên ^HDI = ^DHI (2)
Từ (1) và (2) suy ra: ^HBK = ^DHI = ^FHK. Chú ý rằng HK là tiếp tuyến của (BH)
Do đó ^HBK = ^FHK = ^HBF. Mà F,K cùng phía so với HB nên tia BF trùng tia BK
Vậy ba điểm B,F,K thẳng hàng (đpcm).
A B C M N D E
Ta có ^MEN = ^NBD + ^MCD = 1800 - ^MAN. Suy ra tứ giác AMEN nội tiếp
Cũng dễ có tứ giác BCMN nội tiếp đường tròn (BC)
Từ đó ^AEM = ^ANM = ^MCB = ^MCD = 1800 - ^MED. Hay ^AEM + ^MED = 1800
Vậy thì A,E,D thẳng hàng (đpcm).
Ta có ^BCN = ^BMN ( do tứ giác BNMC nội tiếp )
=> ^NBC = ^AMN ( cùng phụ với hai góc bằng nhau ) (1)
Mặt khác do BDEN và CDEM là các tứ giác nội tiếp chung cạnh DE
Nên ^NBD + ^MCD = ^NEM ( tính chất góc ngoài tứ giác nội tiếp )
Mà ^NBD + ^MCD + ^NAM = 1800
Suy ra ^NEM + ^NAM = 1800 . Vây AMEN nội tiếp
Do đó: ^AMN = ^AEN (2)
Từ (1) và (2) suy ra ^NBD = ^AEN
Mà ^NBD + ^DEN = 1800 (do BDEN nội tiếp)
Nên ^DEN + ^AEN = 1800 => ^AED=1800 .
Vậy ba điểm A, E, D thẳng hàng (đpcm)
O H D E F A B C Q
+) Theo tính chất hai tiếp tuyến giao nhau thì AE = AF
Có ^CDQ = ^BDC/2 = (1800 - ^BAC)/2 = ^AFE (Vì \(\Delta\)AEF cân tại A)
Suy ra tứ giác QFCD nội tiếp (đpcm).
+) Chứng minh tương tự ta có tứ giác DQEB nội tiếp
Do đó ^DCQ = ^DFQ = ^DEB = ^DQB. Kết hợp với ^QDC = ^BDQ
Suy ra \(\Delta\)DQC ~ \(\Delta\)DBQ (g.g). Vậy thì \(\frac{DQ}{DB}=\frac{DC}{DQ}\Rightarrow QD^2=DB.DC\)(đpcm).