K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

bdfbzdtvbeay           q4etwrtc3t5wtư

3 tháng 8 2019

êrtechcgrgdcgtgư

3 tháng 8 2019

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)

\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)

\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)

\(=\left(\left(-\sqrt{7}\right)+\left(-\sqrt{5}\right)\right)\cdot\frac{\sqrt{7}-\sqrt{7}}{1}\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\cdot\frac{\sqrt{7}-\sqrt{5}}{1}\)

\(=\frac{-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{1}\)

\(=\frac{-\left(7-5\right)}{1}=-2\)

4 tháng 8 2019

A B C H D O E F K G I

Đặt G là trung điểm HC, DG cắt HE tại I.

Dễ thấy \(\Delta\)AHB ~ \(\Delta\)CHD (g.g) với trung tuyến tương ứng BK,DG. Suy ra \(\Delta\)BHK ~ \(\Delta\)DHG (c.g.c)

Suy ra ^HBK = ^HDG = ^HDI (1)

Áp dụng ĐL Melelaus cho \(\Delta\)GCD và 3 điểm E,I,H có \(\frac{ED}{EC}.\frac{IG}{ID}.\frac{HC}{HG}=1\)

Bởi vì \(\frac{ED}{EC}=\frac{1}{2};\frac{HC}{HG}=2\)nên \(\frac{IG}{ID}=1\)hay I là trung điểm GD

Ta thấy \(\Delta\)DGH vuông tại H có trung tuyến HI nên ^HDI = ^DHI (2)

Từ (1) và (2) suy ra: ^HBK = ^DHI = ^FHK. Chú ý rằng HK là tiếp tuyến của (BH)

Do đó ^HBK = ^FHK = ^HBF. Mà F,K cùng phía so với HB nên tia BF trùng tia BK

Vậy ba điểm B,F,K thẳng hàng (đpcm).

4 tháng 8 2019

A B C M N D E

Ta có ^MEN = ^NBD + ^MCD = 1800 - ^MAN. Suy ra tứ giác AMEN nội tiếp

Cũng dễ có tứ giác BCMN nội tiếp đường tròn (BC)

Từ đó ^AEM = ^ANM = ^MCB = ^MCD = 1800 - ^MED. Hay ^AEM + ^MED = 1800

Vậy thì A,E,D thẳng hàng (đpcm).

27 tháng 2 2020

Ta có ^BCN = ^BMN ( do tứ giác BNMC nội tiếp )

=> ^NBC = ^AMN  ( cùng phụ với hai góc bằng nhau ) (1)

Mặt khác do BDEN và CDEM là các tứ giác nội tiếp chung cạnh DE

Nên ^NBD + ^MCD = ^NEM  ( tính chất góc ngoài tứ giác nội tiếp )

Mà ^NBD + ^MCD + ^NAM = 1800

Suy ra ^NEM + ^NAM = 1800 .  Vây AMEN nội tiếp

Do đó: ^AMN = ^AEN  (2)

Từ (1) và (2) suy ra ^NBD = ^AEN

Mà ^NBD + ^DEN = 1800 (do BDEN nội tiếp)

Nên ^DEN + ^AEN = 1800  => ^AED=1800 .

Vậy ba điểm A, E, D thẳng hàng (đpcm)

4 tháng 8 2019

O H D E F A B C Q

+) Theo tính chất hai tiếp tuyến giao nhau thì AE = AF

Có ^CDQ = ^BDC/2 = (1800 - ^BAC)/2 = ^AFE (Vì \(\Delta\)AEF cân tại A)

Suy ra tứ giác QFCD nội tiếp (đpcm).

+) Chứng minh tương tự ta có tứ giác DQEB nội tiếp

Do đó ^DCQ = ^DFQ = ^DEB = ^DQB. Kết hợp với ^QDC = ^BDQ

Suy ra \(\Delta\)DQC ~ \(\Delta\)DBQ (g.g). Vậy thì \(\frac{DQ}{DB}=\frac{DC}{DQ}\Rightarrow QD^2=DB.DC\)(đpcm).