giúp hộ e vớiii ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+99}\)
\(=\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{99\cdot\dfrac{100}{2}}\)
\(=\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\)
\(=2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=1-\dfrac{1}{50}=\dfrac{49}{50}\)
1: \(\left(2,07-3,005\right)-\left(12,005-4,23\right)\)
\(=2,07-3,005-12,005+4,23\)
\(=6,3-15,01\)
=-8,71
2: \(\left(-0,4\right)\cdot\left(-0,5\right)\cdot\left(-0,8\right)\)
\(=-0,4\cdot0,5\cdot0,8\)
\(=-0,2\cdot0,8=-0,16\)
3: \(\left(-0,76\right)+6,72+0,76+\left(-2,72\right)\)
\(=\left(-0,76+0,76\right)+\left(6,72-2,72\right)\)
=0+4
=4
Gọi d=ƯCLN(2n+3;n+2)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\n+2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\2n+4⋮d\end{matrix}\right.\)
=>\(2n+3-2n-4⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(2n+3;n+2)=1
=>\(\dfrac{2n+3}{n+2}\) là phân số tối giản
a.
Số cây Lan trồng được là:
\(480\times\dfrac{1}{4}=120\) (cây)
Số cây Hồng trồng được là:
\(480\times\dfrac{3}{10}=144\) (cây)
b.
Số cây Điệp trồng được là:
\(\left(120+144\right)\times\dfrac{1}{2}=132\) (cây)
c.
Số cây Mạnh trồng được là:
\(480-\left(120+144+132\right)=84\) (cây)
Tỉ số phần trăm số cây Mạnh trồng so với số cây của 4 bạn là:
\(\left(\dfrac{84.100}{480}\right)\%=17,5\%\)
-5/9 x 7/13 + 5/9 x -6/13 + 2 5/9
= -5/9 x 7/13 + 5/9 x -6/13 + 23/9
= 5/9 x -7/13 + 5/9 x -6/13 + 23/9
= 5/9 x (-7/13 - 6/13) + 23/9
= 5/9 x -1 + 23/9
= -5/9 + 23/9
= 2
Câu 1: A
Câu 2: D
Câu 3: B
Câu 4: C
Câu 5: B
Câu 6: A
Câu 7: A
Câu 8: D
Ta có công thức: \(\dfrac{n\left(n-1\right)}{2}\)
Thay vào bài, ta được:
\(\dfrac{n\left(n-1\right)}{2}=91\\ n\left(n-1\right)=91.2\\ n\left(n-1\right)=182\\ 14\left(14-1\right)=182\)
Vậy \(n=14\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{20^2}< \dfrac{1}{19\cdot20}=\dfrac{1}{19}-\dfrac{1}{20}\)
Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
=>\(A< 1-\dfrac{1}{20}\)
=>A<1
=>0<A<1
=>A không là số tự nhiên
a.
\(6,1.\left(-5,3\right)+6,1.\left(-4,7\right)=6,1.\left(-5,3-4,7\right)=6,1.\left(-10\right)=-61\)
b.
\(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{2}{4}\right)=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)