Cặp có thứ tự các số nguyên \(\left(x,y\right)\)được gọi là điểm nguyên thủy nếu ước số chung lớn nhất của \(x\) và \(y\) bằng 1. Cho tập \(S\)gồm hữu hạn điểm nguyên thủy. Chứng minh rằng tồn tại số nguyên dương \(n\)và các số nguyên \(a_1,a_2,...,a_n\) sao cho với mỗi điểm \(\left(x,y\right)\)thuộc \(S\), ta có:
\(a_0x^n+a_1x^{n-1}y+a_2x^{n-2}y^2+...+a_{n-1}xy^{n-1}+a_ny^n=1\)