Giải phương trình
\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
Căn là để làm màu,khử căn bằng cách bình phương
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c};\sqrt{d};\sqrt{e}\right)\rightarrow\left(x;y;z;t;v\right)\)
Khi đó ta cần chứng minh:
\(x^2+y^2+z^2+t^2+v^2\ge x\left(y+z+t+v\right)\)
\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2+4v^2-4xy-4xz-4xt-4xv\ge0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4xz+4z^2\right)+\left(x^2-4xt+4t^2\right)+\left(x^2-4xv+4v^2\right)\ge0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2z\right)^2+\left(x-2t\right)^2+\left(x-2v\right)^2\ge0\)
Dấu "=" xảy ra tại x=2y=2z=2t=2v
Đặt \(u=\sqrt{x+2};v=\sqrt{x+y}\)
Hệ trở thành \(\hept{\begin{cases}6u=v\left(1\right)\\\frac{3}{v}+\frac{2}{u}=\frac{1}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{6u+4v}{2uv}=\frac{1}{2}\)
\(\Leftrightarrow\frac{5v}{2uv}=\frac{1}{2}\)(Thay từ (1))
\(\Leftrightarrow\frac{5}{2u}=\frac{1}{2}\Leftrightarrow\frac{1}{u}=\frac{1}{5}\Rightarrow u=5\)
\(\Rightarrow\sqrt{x+2}=5\Rightarrow x+2=25\Rightarrow x=23\)
u = 5 nên v = 30 hay \(\sqrt{x+y}=30\Rightarrow x+y=900\Rightarrow y=877\)
Vậy hệ có 1 nghiệm (23;877)
\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow\frac{x^3+x^2+x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow x^3+x^2+x=\left(3-x\right)\left(x+1\right)\sqrt{x+1}\sqrt{2-x}\)