K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

EM thử nha, sai thì chịu!

Gọi M là trung điểm BC. Khi đó BM =  \(\frac{1}{2}BC\)(1) và CM = \(\frac{1}{2}BC\)(2)

Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên:

+)Tam giác KCB có trung tuyến \(KM=\frac{1}{2}BC\) (3)

Tương tự \(HM=\frac{1}{2}BC\)(4)

Từ (1), (2), (3) và (4) ta có B, K, H, C luôn cách M một khoảng không đổi và bằng \(\frac{1}{2}BC\) nên B, K, H, C cùng thuộc đường trong tâm M, bán kính \(\frac{1}{2}BC\). vậy ta có đpcm.

Hình sẽ đăng sau.

7 tháng 8 2019

Hình vẽ:

A B H C K M

P/s: Hình vẽ chỉ mang t/c minh họa nên hơi xấu chút ạ!

7 tháng 8 2019

đặt x - 2 = a ; x - 3 = b thì a + b = 2x - 5

Ta có : ( a + b )3 - a3 = b3

\(\Rightarrow\)a3 + b+ 3ab ( a + b ) - a3 = b3

\(\Rightarrow\)3ab ( a + b ) = 0

\(\Rightarrow\)a = 0 hoặc b = 0 hoặc a + b = 0

\(\Rightarrow\)x = 3 hoặc x = 2 hoặc x = \(\frac{5}{2}\)

7 tháng 8 2019

\(x+y\sqrt{5}=\sqrt{\frac{29}{36}-\frac{1}{3}\sqrt{5}}\)

<=> \(6\left(x+y\sqrt{5}\right)=\sqrt{29-12\sqrt{5}}\)

<=>\(6\left(x+y\sqrt{5}\right)=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

<=> \(\left(6x+3\right)=2\sqrt{5}\left(1-3y\right)\)

Mà x,y là số hữu tỉ

=> \(\hept{\begin{cases}6x+3=0\\1-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

7 tháng 8 2019

P/s: Em dùng phương pháp bđt đánh giá VP > VT rồi xét dấu đẳng thức như vậy ta sẽ tìm được nghiệm nha!

Mấy lần trước em dùng pp này mà mọi người lại tưởng em làm lạc đề :((

ĐK:...

Ta có: \(VT\le\frac{x^2+x}{2}+\frac{-x^2+x+2}{2}=x+1\) (cô si)

Mặt khác \(VP=\left(x^2-2x+1\right)+\left(x+1\right)=\left(x-1\right)^2+\left(x+1\right)\)

\(\ge\left(x+1\right)\ge VT\).

Theo đề bài thì VT = VP nên để đẳng thức xảy ra thì:

\(\hept{\begin{cases}x^2+x-1=1\\-x^2+x+1=1\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+x-2=0\\-x^2+x=0\\x=1\end{cases}}\Leftrightarrow x=1\) (TMĐK)

Vậy x = 1

P/s: còn thiếu nghiệm nào không ta? Nếu có thì mọi người góp ý + sửa luôn giúp em nha! Thanks ạ!

7 tháng 8 2019

\(M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)+x^3+\frac{1}{x^3}}\)

\(M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\frac{2x^6+3x^4+3x^2+2}{x^3}}\)

\(M=\frac{\left[\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2\right]x^3}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{x^3\left(6x^4+15x^2+\frac{15}{x^2}+\frac{6}{x^4}+18\right)}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{\frac{6x^8+15x^6+18x^4+15x^2+6}{x^4}.x^3}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{\frac{6x^8+15x^6+18x^4+15x^2+6}{x}}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{6x^8+15x^6+18x^4+15x^2+6}{x\left(2x^6+3x^4+3x^2+2\right)}\)

\(M=\frac{3\left(x^2+1\right)^2\left(2x^4+x^2+2\right)}{x\left(x^2+1\right)\left(2x^4+x^2+2\right)}\)

\(M=\frac{3\left(x^3+1\right)}{x}\)