Cho ▲ABC có các đường cao BH và CK.
C/minh: B,K,H,C cùng nằm trên một đường tròn,xác định tâm đường tròn đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x - 2 = a ; x - 3 = b thì a + b = 2x - 5
Ta có : ( a + b )3 - a3 = b3
\(\Rightarrow\)a3 + b3 + 3ab ( a + b ) - a3 = b3
\(\Rightarrow\)3ab ( a + b ) = 0
\(\Rightarrow\)a = 0 hoặc b = 0 hoặc a + b = 0
\(\Rightarrow\)x = 3 hoặc x = 2 hoặc x = \(\frac{5}{2}\)
\(x+y\sqrt{5}=\sqrt{\frac{29}{36}-\frac{1}{3}\sqrt{5}}\)
<=> \(6\left(x+y\sqrt{5}\right)=\sqrt{29-12\sqrt{5}}\)
<=>\(6\left(x+y\sqrt{5}\right)=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
<=> \(\left(6x+3\right)=2\sqrt{5}\left(1-3y\right)\)
Mà x,y là số hữu tỉ
=> \(\hept{\begin{cases}6x+3=0\\1-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
P/s: Em dùng phương pháp bđt đánh giá VP > VT rồi xét dấu đẳng thức như vậy ta sẽ tìm được nghiệm nha!
Mấy lần trước em dùng pp này mà mọi người lại tưởng em làm lạc đề :((
ĐK:...
Ta có: \(VT\le\frac{x^2+x}{2}+\frac{-x^2+x+2}{2}=x+1\) (cô si)
Mặt khác \(VP=\left(x^2-2x+1\right)+\left(x+1\right)=\left(x-1\right)^2+\left(x+1\right)\)
\(\ge\left(x+1\right)\ge VT\).
Theo đề bài thì VT = VP nên để đẳng thức xảy ra thì:
\(\hept{\begin{cases}x^2+x-1=1\\-x^2+x+1=1\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+x-2=0\\-x^2+x=0\\x=1\end{cases}}\Leftrightarrow x=1\) (TMĐK)
Vậy x = 1
P/s: còn thiếu nghiệm nào không ta? Nếu có thì mọi người góp ý + sửa luôn giúp em nha! Thanks ạ!
\(M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)+x^3+\frac{1}{x^3}}\)
\(M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\frac{2x^6+3x^4+3x^2+2}{x^3}}\)
\(M=\frac{\left[\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2\right]x^3}{2x^6+3x^4+3x^2+2}\)
\(M=\frac{x^3\left(6x^4+15x^2+\frac{15}{x^2}+\frac{6}{x^4}+18\right)}{2x^6+3x^4+3x^2+2}\)
\(M=\frac{\frac{6x^8+15x^6+18x^4+15x^2+6}{x^4}.x^3}{2x^6+3x^4+3x^2+2}\)
\(M=\frac{\frac{6x^8+15x^6+18x^4+15x^2+6}{x}}{2x^6+3x^4+3x^2+2}\)
\(M=\frac{6x^8+15x^6+18x^4+15x^2+6}{x\left(2x^6+3x^4+3x^2+2\right)}\)
\(M=\frac{3\left(x^2+1\right)^2\left(2x^4+x^2+2\right)}{x\left(x^2+1\right)\left(2x^4+x^2+2\right)}\)
\(M=\frac{3\left(x^3+1\right)}{x}\)
EM thử nha, sai thì chịu!
Gọi M là trung điểm BC. Khi đó BM = \(\frac{1}{2}BC\)(1) và CM = \(\frac{1}{2}BC\)(2)
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên:
+)Tam giác KCB có trung tuyến \(KM=\frac{1}{2}BC\) (3)
Tương tự \(HM=\frac{1}{2}BC\)(4)
Từ (1), (2), (3) và (4) ta có B, K, H, C luôn cách M một khoảng không đổi và bằng \(\frac{1}{2}BC\) nên B, K, H, C cùng thuộc đường trong tâm M, bán kính \(\frac{1}{2}BC\). vậy ta có đpcm.
Hình sẽ đăng sau.
Hình vẽ:
A B H C K M
P/s: Hình vẽ chỉ mang t/c minh họa nên hơi xấu chút ạ!