Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý bơ du ta được :
\(2^3+3.2^2+2a+5=8+12+2a+5=25+2a\)
Vậy \(f\left(x\right)=25+2a\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa lại đề: \(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(P=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x^2+2+x^2-1-x^2-x-1}{MTC}=\frac{x^2-x}{MTC}\)
\(=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
BT <=>
\(A=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-9-x-3}{MTC}=\frac{x^2-x-12}{MTC}\)
A = \(\frac{x+2}{x+3}\)\(-\frac{5}{X^2+X-6}\)\(+\frac{1}{2-X}\)
A= \(\frac{x+2}{x+3}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{1}{X-2}\)
A = \(\frac{\left(X+2\right)\left(X-2\right)}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{X+3}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{\left(X+2\right)\left(X-2\right)-5-\left(X+3\right)}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{X-4-5-X-3}{\left(X-2\right)\left(X+3\right)}\)
A= \(-\frac{12}{\left(X-2\right)\left(X+3\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề : \(x^2-y^2+x-y\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)=\left(x-y\right)\left(x+y+1\right)\)
hay sửa như này =))
\(x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-y^2+x-y\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)