K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

3) Xét tam giác vuông BHC và tam giác vuôn BFE có: ^B chung 

=> Tam giác BHC ~ Tam giác BFE

=> \(\frac{BH}{BF}=\frac{BC}{BE}\)

=.> \(\frac{BH}{BC}=\frac{BF}{BE}\)

Xét tam giác BHF và tam giác BCE có:

góc B chung

\(\frac{BH}{BC}=\frac{BF}{BE}\)( chứng minh trên)

=> Tam giác BHF ~ tam giác BCE

4. 

Vì \(\frac{BH}{BC}=\frac{BF}{BE}\)=> \(BC.BF=BH.BE=CD^2=4^2=16\)

=> \(BF=16:BC=16:3=\frac{16}{3}\)(cm)

=> \(S_{BFE}=\frac{1}{2}.BF.EF=\frac{16}{3}.4=\frac{64}{3}\)(cm^2)

Tam giác BFE Vuông tại F. Áp dụng định lí Pitago

=> \(BE^2=BF^2+EF^2=\left(\frac{16}{3}\right)^2+4^2=\frac{400}{9}\Rightarrow BE=\frac{20}{3}\)(cm)

Theo câu a đã tính được \(BH=\frac{12}{5}\)(cm)

Xét tam giác BEF và Tam giác BHF có chung đường cao hạ từ F

=> Có tỉ số \(\frac{S_{BHF}}{S_{BEF}}=\frac{BH}{BE}=\frac{\frac{12}{5}}{\frac{20}{3}}=\frac{9}{25}\)

=> \(S_{BHF}=\frac{9}{25}.S_{BEF}=\frac{9}{25}.\frac{64}{3}=\frac{192}{25}\)(cm^2)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

9 tháng 8 2019

\(\sqrt{a^2+2b^2}=\sqrt{a^2+b^2+b^2}\ge\sqrt{\frac{\left(a+2b\right)^2}{3}}=\frac{1}{\sqrt{3}}\left(a+2b\right)\)

Tương tự: \(\sqrt{b^2+2c^2}\ge\frac{1}{\sqrt{3}}\left(b+2c\right);\sqrt{c^2+2a^2}\ge\frac{1}{\sqrt{3}}\left(c+2a\right)\)

Cộng các bđt lại ta đc: \(\sqrt{a^2+2b^2}+\sqrt{b^2+2c^2}+\sqrt{c^2+2a^2}\ge\frac{1}{\sqrt{3}}\left(3a+3b+3c\right)=\sqrt{3}\left(a+b+c\right)\)

Dấu "=" xảy ra khi a=b=c 

9 tháng 8 2019

Do \(2x^2+2>0;\sqrt{x^2-2x+3}>0\)

=> \(x+1>0\)

Áp dụng cosi cho vế trái ta có:

\(\left(x+1\right)\sqrt{x^2-2x+3}\le\frac{1}{2}\left(x^2+2x+1+x^2-2x+3\right)=x^2+2\le2x^2+2=VP\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}x+1=\sqrt{x^2-2x+3}\\x=0\end{cases}}\)(vô nghiệm)

=> PT vô nghiệm 

Vậy PT vô nghiệm

9 tháng 8 2019

\(\text{COSI CẦN SỐ KHÔNG ÂM MÀ}\)

9 tháng 8 2019

Giả gấp hộ cái đc ko

9 tháng 8 2019

=0.5176380902

   study well

 k nha'

 ai k đúng cho mk mk trả lại gấp đôi