K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

Lấy pt(1) nhân với pt(2) ta được: 

\(\left(x+y\right)\left(x^2+y^2-xy\right)=2x^3\Leftrightarrow x^3+y^3=2x^3\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay vào pt (1) của hệ ta được: \(x^2+x^2-x.x=2\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\Rightarrow y=\sqrt{2}\\x=-\sqrt{2}\Rightarrow y=-\sqrt{2}\end{cases}}\)

Vậy ...

biet thi tu lam

8 tháng 3 2020

\(x^2+y+\frac{3}{4}\ge x^2+\frac{1}{4}+y+\frac{1}{2}\ge2\sqrt{x^2\cdot\frac{1}{4}}+\left(y+\frac{1}{2}\right)\ge x+y+\frac{1}{2}\)

\(\Rightarrow VT\ge\left(x+y+\frac{1}{2}\right)^2=\left[\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)\right]^2\ge4\left(x+\frac{1}{4}\right)\left(y+\frac{1}{4}\right)\)

\(=\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

\(PT\Leftrightarrow x^2y^2+y^3+x^3+\frac{3}{4}\left(x^2+y^2\right)+xy+\frac{3}{4}\left(x+y\right)+\frac{9}{16}=4xy+x+y+\frac{1}{4}.\)

\(\Leftrightarrow x^2y^2+\left(x+y\right)^3-3xy\left(x+y\right)+\frac{3}{4}\left[\left(x+y\right)^2-2xy\right]+\frac{1}{4}\left(x+y\right)-3xy+\frac{5}{16}=0\)

Đặt \(x+y=a,xy=b\)

\(\Rightarrow b^2+a^3-3ab+\frac{3}{4}\left(a^2-2b\right)+\frac{a}{4}-3b+\frac{5}{16}=0\)

\(\Leftrightarrow16b^2+16a^3-48ab+12a^2-24b+4a-48b+5=0\)

\(\Leftrightarrow16b^2+16a^3-48ab+12a^2-72b+4a+5=0\)

Đến đây phân tích thành nhân tử hay sao ấy, chưa nghĩ ra :P

8 tháng 3 2020

bạn tham khảo ở đây nhé:

 Từ xa xưa, những người Ai Cập cổ đã phát minh ra giấy pa-py-rus; người Trung Quốc cổ đã nghĩ đến mai rùa, thân trúc... tất cả những vật dụng đó được dùng để ghi lại những hiểu biết của người xưa về tự nhiên và xã hội. Đó là cách đo đạc, cách tính toán, cách tính lịch âm dương, cách chế tạo thuốc nổ, lịch sử của những vùng đất, quốc gia,... về sau, những nhà khoa học theo đó mà tiếp tục kế thừa thành tựu của cha ông để phát minh ra những công trình khoa học mới: đèn điện, các chất hóa học,... hoặc để nghiên cứu đầy đủ, sâu sắc hơn về các chế độ xã hội, các vấn đề lịch sử,... Ngày nay, thế giới, lại có hàng trăm bộ sách ghi chép, lưu giữ thành tựu khoa học của tiền nhân, về khoa học tự nhiên có thể kể đến những tác phẩm của Ga-li-lê, Niu-tơn, Ga-loa, Men-đen-lê-ép, Ma-ri Cu-ri, An-be Anh-xtanh,... về khoa học xã hội có thể kể đến Khổng Tử, Tư Mã Thiên, các vị tư tế phương Tây, Các Mác, Lê-nin,... Ngày nay, chúng ta đang tiếp tục nghiên cứu những tác phẩm bất hủ đó để phát triển đời sống xã hội. Sách thực sự là kho tàng quý báu cất giữ di sản tinh thần nhân loại.

chúc bạn học tốt!

8 tháng 3 2020

Bạn tham khảo link này nha

https://h.vn/hoi-dap/question/620380.html

Học tốt!!!

#Bo

Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)

Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)

Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)

do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)

Đến đây xét từng TH là  ra

8 tháng 3 2020

rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)

=\(1+\frac{5}{\sqrt{x}+1}\)

Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)

Đến đây thì ez rồi

7 tháng 3 2020

Ta có \(4xy^2-3x-3y^2=1\Leftrightarrow y^2\left(4x-3\right)=3x+1\Leftrightarrow y^2=\frac{3x+1}{4x-3}\inℤ\left(do4x-3\ne0\right)\)

\(\Rightarrow3x+1⋮4x-3\Rightarrow4\left(3x+1\right)⋮4x-3\Leftrightarrow3\left(4x-3\right)+13⋮4x-3\Leftrightarrow13⋮4x-3\)

\(\Rightarrow4x-3\inƯ\left(13\right)=\left\{\pm1,\pm13\right\}\Leftrightarrow4x\in\left\{-10,2,4,16\right\}\Rightarrow x\in\left\{1,4\right\}\)(do x thuộc Z)

Với \(x=1\Rightarrow y^2=4\Rightarrow y=\pm2\left(tm\right)\)

Với \(x=4\Rightarrow y^2=1\Rightarrow y=\pm1\left(tm\right)\)

4xy²−3x−3y²=14xy²−3x−3y²=1

⇔ y²(4x−3)−0,75(4x−3)=3,25y²(4x−3)−0,75(4x−3)=3,25

⇔ (4x−3)(y²−0,75)=3,25(4x−3)(y²−0,75)=3,25

⇔ (4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)(4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)

Ta có bảng giá trị

4x-3     |     1     |     13     |     -1     |     -13     |

x          |      1    |      4      |      /      |       /       |

4y²-3    |    13    |      1      |    -13    |       -1     |

y          |    ±2    |      ±1    |      /      |       /       |

Vậy ...

7 tháng 3 2020

2) Em nhầm đề ca/b+1

Ta có:

VT = \(\frac{ab}{c+a+b+c}+\frac{bc}{a+a+b+c}+\frac{ac}{b+a+b+c}\)

=\(\frac{ab}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}\)

 =\(\frac{ab}{4}.\frac{4}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{4}.\frac{4}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{4}.\frac{4}{\left(a+b\right)+\left(b+c\right)}\)

\(\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

=\(\frac{1}{4}\left[\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Dấu "=" xảy ra <=>  a= b = c =1/3