K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

TRả lời:

The film is very interesting. I have seen it twice.(such)

-It is such an interesting movie that I've seen it twice

học tốt

10 tháng 3 2020

cảm ơn bạn nha

10 tháng 3 2020

mọi người đang ngủ trưa ạ?? :)

10 tháng 3 2020

không ngủ được

10 tháng 3 2020

Đề sai nha phải như này nà :b

\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\)\(\left(\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(x-2\sqrt{x}+1\right)\)

\(=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)^2\)

\(=\frac{1}{\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

Đẳng thức được cm :D

10 tháng 3 2020

Mình cảm ơn bạn nhiều :D 

10 tháng 3 2020

\(\sqrt{\left(\sqrt{2}-3\right)^2}-\sqrt{2\left(-3\right)^2}-4\sqrt{11-6\sqrt{2}}\)

\(=|\sqrt{2}-3|-3\sqrt{2}-4\sqrt{9-2.3.\sqrt{2}+2}\)

\(=3-\sqrt{2}-3\sqrt{2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3-\sqrt{2}-3\sqrt{2}-4\left(3-\sqrt{2}\right)\)

\(=3-\sqrt{2}-3\sqrt{2}-12+4\sqrt{2}\)

\(=-8\)

10 tháng 3 2020

Mình cảm ơn ạ 

10 tháng 3 2020

mình sửa đề câu 1 

\(x^2-3x-6+\sqrt{x^2-3x}=0\)

\(ĐK:x\le12\)

Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)

PT trở thành a+b=6

Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)

Đến đây đơn giản rồi nhé

10 tháng 3 2020

\(2x^2+2y^2+3x-6y=5xy-7\)

\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)

\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)

\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)

vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)

Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7

Tới đây bạn tự làm nhé