Cho x, y, z là các số dương thỏa mãn điều kiện: \(x^{2015}+y^{2015}+z^{2015}=3\)
Tính giá trị lớn nhất của biểu thức: \(x^2+y^2+z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N E
ta dựng hình bình hành ABME như hình vẽ
ta có \(\frac{BM}{AD}=\frac{AE}{AD}=\frac{ME}{DN}\Rightarrow BM.DN=AD.ME=AD.DB\) là không đổi
do đó ta có đpcm,
còn câu b đề sai nhỉ, rõ ràng AM,AN>AD mà nhỉ
A B C M N 11 8 24
Bài làm
Xét tam giác ABC
MN // BC
Theo hệ quả định lí Talet có:
\(\frac{AM}{AB}=\frac{AN}{AC}\)
hay \(\frac{11}{11+8}=\frac{AN}{24}\)
=> \(\frac{11}{19}=\frac{AN}{24}\Rightarrow AN=\frac{11\cdot24}{19}\approx13,9\left(cm\right)\)
Ta có: AN + NC = AC
hay 13,9 + NC = 24
=> NC = 24 - 13,9 = 10,1 (cm)
Vậy....
Ta có: \(\left(x-y\right)^2=x^2-2xy+y^2\)
Thay \(x^2+y^2=30;\)\(xy=5\)vào \(\left(x-y\right)^2=x^2-2xy+y^2,\)ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2=30-2.15=0\)
Vậy \(\left(x-y\right)^2=0\)
áp dụng bất đẳng thức cauchy cho 2015 số , ta có
\(2x^{2015}+2013=x^{2015}+x^{2015}+1+1+..+1\ge2015\sqrt[2015]{x^{2015}.x^{2015}}=2015x^2\)
tương tự ta có
\(\hept{\begin{cases}2.y^{2015}+2013\ge2015y^2\\2.z^{2015}+2013\ge2015z^2\end{cases}}\)
cộng ba bất đẳng thức lại ta có \(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)
hay \(2015\left(x^2+y^2+z^2\right)\le2.3+2013.3=2015.3\Rightarrow\left(x^2+y^2+z^2\right)\le3\)
dấu "=" xảy ra khi x=y=z=1