K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2023

\(-x^2+3x^2-3x+1\)

\(=-\left(x^3-3x^2+3x-1\right)\)

\(=-\left(x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\right)\)

\(=-\left(x-1\right)^3\)

Áp dụng hằng đẳng thức số 5:

\(\left(A-B\right)^5=A^3-3A^2B+3AB^2-B^3\)

6 tháng 10 2023

Gọi hai số đó có dạng: \(x,x+1\) (\(x\in N\)

Hiệu các bình phương của chúng là 31 nên ta có: \(\left(x+1\right)^2-x^2=31\) (1)

Giải phương trình (1) ta có:

\(\left(x+1\right)^2-x^2=31\)

\(\Leftrightarrow x^2-x^2+2x+1=31\)

\(\Leftrightarrow2x+1=31\)

\(\Leftrightarrow2x=30\)

\(\Leftrightarrow x=15\)

Vậy hai số đó là: \(15,16\)  

5 tháng 10 2023

\(C=c\left[b\left(a+d\right)\left(b-c\right)+a\left(b+d\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab+bd\right)\left(b-c\right)+\left(ab+ad\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab^2-abc+b^2d-bcd+abc-a^2b+acd-a^2d\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab^2-a^2b\right)+\left(b^2d-a^2d\right)+\left(acd-bcd\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab\left(b-a\right)+d\left(a+b\right)\left(b-a\right)+cd\left(a-b\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left(a-b\right)\left(-ab-da-db+cd\right)+ab\left(c+d\right)\left(a-b\right)\)

\(C=\left(a-b\right)\left(-abc-acd-bcd+c^2d+abc+abd\right)\)

\(C=\left(a-b\right)\left(-acd-bcd+abd+c^2d\right)\)

\(C=c\left(a-b\right)\left(c^2+ab-ac-bc\right)\)

\(C=c\left(a-b\right)\left[\left(c^2-ac\right)-\left(bc-ab\right)\right]\)

\(C=c\left(a-b\right)\left[c\left(c-a\right)-b\left(c-a\right)\right]\)

\(C=c\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

 

29 tháng 10 2023

a: ΔABC vuông cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

=>AEDF là hình vuông

b: AEDF là hình vuông

=>góc AEF=45 độ

=>góc AEF=góc ABC

=>EF//BC

20 tháng 11 2023

a) AEDF là hình vuông.

b)  ��EF // ��.BC.

c)  ���^=90∘.AND=90.

20 tháng 11 2023

a)  ����ADME là hình chữ nhật.

b) .Tứ giác ����AMBI là hình thang cân

c)  điều kiện của Δ���ΔABC để tứ giác ����AMBI là hình vuông.

d)  ��⊥��.PQAM.

20 tháng 11 2023

a)  ����ABCD là hình bình hành.

b)  �,�,�P,N,Q thẳng hàng.

c) Δ���ΔABC cần thêm điều kiện gì để tứ giác ����ABCD là hình vuông.

20 tháng 11 2023

a) Chứng minh ����MCDN là hình thoi.

b) Chứng minh ����ABMD là hình thang cân và ��=��.AM=BD.

c) ��DM kéo dài cắt ��AB tại �.K. Chứng minh ��,��,��AM,DB,KN đồng quy.

17 tháng 10 2023

Ta có ����ABCD là hình thoi nên ��⊥��ACBD tại trung điểm của mỗi đường nên ��BD là trung trực của ��AC

Suy ra ��=��,��=��GA=GC,HA=HC (1)(1)

Và ��AC là trung trực của ��BD suy ra ��=��,��=��AG=AH,CG=CH (2)(2)

Từ (1),(2)(1),(2) suy ra ��=��=��=��AG=GC=CH=HA nên ����AGCH là hình thoi.

27 tháng 10 2023

Ta có ����ABCD là hình thoi nên ��⊥��ACBD tại trung điểm của mỗi đường nên ��BD là trung trực của ��AC

Suy ra ��=��,��=��GA=GC,HA=HC (1)(1)

Và ��AC là trung trực của ��BD suy ra ��=��,��=��AG=AH,CG=CH (2)(2)

Từ (1),(2)(1),(2) suy ra ��=��=��=��AG=GC=CH=HA nên ����AGCH là hình thoi.

27 tháng 10 2023

a) ����ABCD là hình bình hành nên hai đường chéo ��,��AC,BD cắt nhau tại O là trung điểm của mỗi đường.

Xét Δ���ΔOBM và Δ���ΔODP có:

     ��=��OB=OD ( giả thiết)

     ���^=���^OBM=ODP (so le trong)

     ���^=���^BOM=DOP (đối đỉnh)

Vậy Δ���=Δ���ΔOBM=ΔODP (g.c.g)

Suy ra ��=��OM=OP (hai cạnh tương ứng)

Chứng minh tương tự Δ���=Δ���ΔOAQ=ΔOCN (g.c.g) suy ra ��=��OQ=ON (hai cạnh tương ứng)

����MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

b) Hình bình hành ����MNPQ có hai đường chéo ��⊥��MPNQ nên là hình thoi.

12 tháng 11 2023

loading...

a) ����ABCD là hình bình hành nên hai đường chéo ��,��AC,BD cắt nhau tại O là trung điểm của mỗi đường.

Xét Δ���ΔOBM và Δ���ΔODP có:

     ��=��OB=OD ( giả thiết)

     ���^=���^OBM=ODP (so le trong)

     ���^=���^BOM=DOP (đối đỉnh)

Vậy Δ���=Δ���ΔOBM=ΔODP (g.c.g)

Suy ra ��=��OM=OP (hai cạnh tương ứng)

Chứng minh tương tự Δ���=Δ���ΔOAQ=ΔOCN (g.c.g) suy ra ��=��OQ=ON (hai cạnh tương ứng)

����MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

b) Hình bình hành ����MNPQ có hai đường chéo ��⊥��MPNQ nên là hình thoi.