K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Ta có \(a,b,c\)và \(a',b',c'\)là độ dài các cạnh tương ứng của 2 tam giác đồng dạng

Đương nhiên \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\left(k>0\right)\). Khi đó:

\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\)(1)

\(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k\left(a'+b'+c'\right)^2}=\sqrt{k}\left(a'+b'+c'\right)\)(2)

Từ (1) và (2) suy ra ĐPCM.

16 tháng 8 2019

Bạn tham khảo câu này nhé: 

https://olm.vn/hoi-dap/detail/210792556876.html

17 tháng 8 2019

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :

\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(2\left(a+b+c\right)\right)=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

17 tháng 8 2019

Do a là nghiệm của pt \(x^2-3x+1=0\) nên \(a^2-3a+1=0\)\(\Leftrightarrow\)\(a^2=3a-1\)

\(\Rightarrow\)\(a^4=\left(3a-1\right)^2=9a^2-6a+1=9\left(3a-1\right)-6a+1=21a-8\)

\(P=\frac{a^2}{a^4+a^2+1}=\frac{3a-1}{21a-8+3a-1+1}=\frac{3a-1}{24a-8}=\frac{3a-1}{8\left(3a-1\right)}=\frac{1}{8}\)

Thiếu chứng minh điều kiện bằng j bạn ơi

16 tháng 8 2019

ban ghi ro de bai duoc ko ? mik ko hieu de bai

16 tháng 8 2019

https://www.youtube.com/watch?v=ylWDD1Df-e8

Bạn tham khảo ở đây nha! ( bài này ở 7:50 nha)

Học tốt!

16 tháng 8 2019

b) khai triển hằng đẳng thức là ra

a) nhân tích chéo

16 tháng 8 2019

\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)

\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)

co nhieu cau tuong tu tren mang ban tu tm hieu nhe