\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{12x^2}{x+3}\)
\(12x^2\ge0\forall x\Rightarrow A< 0\Leftrightarrow x+3< 0\)
\(\Leftrightarrow x< -3\)
~~
ĐKXĐ: \(x\ne\pm1;x\ne0\)
a, \(A=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
= \(\frac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{5\left(x-1\right)}{2x}\)
= \(\frac{20x\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}\)
= \(\frac{10}{x+1}\)
Vậy ......
b, Thay x=3 vào A
A= \(\frac{10}{4}=\frac{5}{2}\)
Vì x khác -1 nên ko cần tính TH này
c, Cho A = 2
=> \(\frac{10}{x+1}=2\)
=> \(2x+2=10\)
=> x= 4
vậy ......
hok tốt
=( \(\frac{x^2+1-x-1}{x+1}\))\(\left(\frac{2x+2}{x^2-x}\right)\)
= \(\frac{2\left(x^2-x\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x\right)}\)
=2
vậy ....
hok tốt
.....
\(5\left(x+4\right)\left(x-4\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4-96+80\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\)
Ta có : \(\frac{2}{2x-6}+\frac{1}{x+2}+\frac{2.x}{\left(x+1\right).\left(3-x\right)}=0\)
ĐKXĐ : x \(\ne\)-1 ; x \(\ne\)-2 ; x \(\ne\)3
MTC : ( x + 1 ) . ( x+ 2 ) . ( x - 3 )
<=> ( x + 1 ) . ( x + 2 ) + ( x + 1 ) . ( x + 3 ) - 2.x. ( x + 2 ) = 0
<=> x2 + x + 2.x + 2 + x2 -3.x + x -3 - 2.x2 -4.x = 0
<=> -3.x = 1
<=> x = \(\frac{-1}{3}\)
Vậy S = { \(\frac{-1}{3}\)}
ĐKXĐ: x khác 3, x khác -1
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-1}{3-x}+\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-x-1}{\left(3-x\right)\left(x+1\right)}+\frac{3-x}{\left(3-1\right)\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-2x+4}{\left(3-x\right)\left(x+1\right)}=0\)
<=> -2x+4=0
<=>x=-2
vậy ....