K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

1.

a. nghĩa gốc

b. nghĩa chuyển - phương thức ẩn dụ

c. nghĩa chuyển - ẩn dụ

d. nghĩa chuyển - hoán dụ

2. Từ "chín" trong câu ca dao không dùng phương thức chuyển nghĩa như ở bai 1. đó là hiện tượng từ đồng âm.

14 tháng 3 2020

ĐK: \(x\ge1\)

Từ pt (1) <=> \(\left(y^2-y\sqrt{x-1}\right)-\left(y-\sqrt{x-1}\right)=0\)

<=> \(y\left(y-\sqrt{x-1}\right)-\left(y-\sqrt{x-1}\right)=0\)

<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\)

<=> \(\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)

+) Với y - 1 =0  <=> y = 1 thay vào pt thứ 2 ta có:

\(x^2+1=\sqrt{7x^2-3}\)

<=> \(x^4-5x^2+4=0\)

<=> \(\orbr{\begin{cases}x^2=4\\x^2=1\end{cases}}\)<=> x = 2 (tm đk) ; x = -2 ( loại ); x = 1 ( tmđk ) ; x = -1 (loại)

=> Trường hợp này có 2 nghiệm: ( x ; y ) là ( 2; 1 ) và ( 1; 1 )

+) Với \(y-\sqrt{x-1}=0\)<=> \(y=\sqrt{x-1}\) thay vào pt (2) ta có:

\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\)

<=> \(\left(x^2-4\right)+\left(\sqrt{x-1}-1\right)-\left(\sqrt{7x^2-3}-5\right)=0\)

<=> \(\left(x-2\right)\left(x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}\right)=0\)

<=> \(\orbr{\begin{cases}x-2=0\\x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}=0\left(loai\right)\end{cases}}\)

( vì \(x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}=\left(x+2\right)\left(1-\frac{7}{\sqrt{7x^2-3}+5}\right)+\frac{1}{\sqrt{x-1}+1}>0\)

với mọi x > = 1 )

<=> x = 2 (tm)

Thay vào pt dưới ta có:  y = 1

=> trường hợp này có nghiệm ( 2; 1) 

Kết luận:...

14 tháng 3 2020

giúp mình nhaaaa

Dấu căn dưới mẫu có vt lộn ko z bạn?

14 tháng 3 2020

à nó bị liền  : \(M=\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)

14 tháng 3 2020

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2\le0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc\le0\)

\(\Leftrightarrow-\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\le0\)

\(\Leftrightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\le0\)( Luôn đúng )

\(\Rightarrowđpcm\)

15 tháng 3 2020

Các bước làm:

Thử nghiệm: x = 2 là nghiệm 

------> Thử xem các cách làm tất nhiên là không thể bình phương  -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ

+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3

-----------------------------------------------------------------------------------------------------------------------

Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!

 \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)

<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)

<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi  \(1\le x\le3\))

<=> x - 2 = 0 

<=> x = 2 thỏa mãn đk