Cho phương trình ẩn x:
x2 - 2x + m - 3 = 0 (m là tham số)
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm phân biệt x1; x2 thỏa mãn hệ thức x12 + 12 = 2x2 - x1.x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne\pm1\)
\(A=\left(1+\frac{\sqrt{x}}{x+1}\right)\div\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\frac{\sqrt{x}-1}{x+1}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
Phương trình sau <=> \(\left(1+3x+2x^2\right)\left(1+3x\right)=\left(1+3y+2x^2\right)\left(1+3y\right)\)
<=> \(\left(1+3x\right)^2+2x^2\left(1+3x\right)-\left(1+3y\right)^2-2x^2\left(1+3y\right)=0\)
<=> \(\left[\left(1+3x\right)^2-\left(1+3y\right)^2\right]+\left[2x^2\left(1+3x\right)-2x^2\left(1+3y\right)\right]=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y\right)+2x^2\left(3x-3y\right)=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y+2x^2\right)=0\)
<=> \(\orbr{\begin{cases}x=y\\2x^2+3x+3y+2=0\end{cases}}\)
Với x = y ta có hệ : \(\hept{\begin{cases}x-5y=-20\\x=y\end{cases}}\Leftrightarrow x=y=5\)
Với \(2x^2+3x+3y+2=0\)ta có hệ: \(\hept{\begin{cases}x-5y=-20\\2x^2+3x+3y+2=0\end{cases}}\) hệ này đơn giản em tự giải tiếp!
He ..........me about it last night.
A.tells. B.have told. C.has told D.told
My house..........broken into last night
A.are. B.is. C.was. D.were
He ..........me about it last night.
A.tells. B.have told. C.has told D.told
My house..........broken into last night
A.are. B.is. C.was. D.were