Kể tên một số thể loại tranh đặc sắc thời nhà Nguyễn "1802 - 1045"?
Nhạc họa 9 nha mn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n ( Cu) = x ( mol); n ( Mg ) = y ( mol)
Ta có hệ : \(\hept{\begin{cases}m\left(Cu\right)+m\left(Mg\right)=8,8\\m\left(CuCl_2\right)+m\left(MgCl_2\right)=23\end{cases}}\)
<=> \(\hept{\begin{cases}64x+24y=8,8\\\left(64+35,5.2\right)x+\left(24+35,5.2\right)y=23\end{cases}}\)
<=> \(x=y=0,1\)( mol)
=> m ( Cu ) = 0,1 . 64 = 6,4 ( g )
m ( Mg) = 2,4 ( g)
hóa vẫn được à cô . mà cô quên viết phương trình hóa học :))
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)
= 4(m + 1)2 - 4m2 - 12
= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8
Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0
<=> 8(m - 1) \(\ge\) 0
<=> m -1 \(\ge\)0
<=> m \(\ge\) 1
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)
Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)
ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\)
<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)
=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)
<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)
Hay (2m + 2)2 - 2(m2 + 3) = 8
<=> 4m2 + 8m + 4 - 2m2 - 6 = 8
<=> 2m2 + 8m - 10 = 0
a + b + c = 2 + 8 + (-10) = 0
=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)
Vậy m = 1 thì ....
Để phương trình có 2 nghiệm thì \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+3\right)\ge0\)
\(\Leftrightarrow\Delta'=2m-2\ge0\Leftrightarrow m\ge1\)
anh Tùng ơi, m = 1 thì pt chỉ có 1 nghiệm là 2 thôi ạ
Kết luận là delta >0 <=> m > 1
\(8x^2-8x+m^2+1=0\) ( 1 )
\(\Delta'=16-8\left(m^2+1\right)=16-8m^2-8=8-8m^2\)
PT ( 1 ) có hai nghiệm x1,x2 \(\Leftrightarrow\Delta'=8-8m^2\ge0\)\(\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)
Áp dụng hệ thức Vi-ét, ta có :
\(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=\frac{m^2+1}{8}\end{cases}}\)
Do đó : \(x_1^4-x_2^4=x_1^3-x_2^3\)
\(\Leftrightarrow x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow x_1^3\left(x_1-1\right)-x_2^3\left(x_2-1\right)=0\Leftrightarrow-x_1^3x_2+x_2^3x_1=0\)
\(\Leftrightarrow x_1x_2\left(x_1^2-x_2^2\right)=0\Leftrightarrow x_1x_2\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)
Dễ thấy \(x_1x_2=\frac{m^2+1}{8}>0;x_1+x_2=1>0\)nên \(x_1-x_2=0\Leftrightarrow x_1=x_2\)
Từ đó tìm được \(m=\pm1\)
4) Bananas.............to Europe every year
A.are exported B.exports. C.is exported . D.exported
5) She wishes she...............a palace now
A.owns B.owned. C.is owning. D.Would own
Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit
Phương trình có nghiệm x = 1/2
=> \(8\left(\frac{1}{2}\right)^2-8\cdot\frac{1}{2}+m^2+1=0\)
=> \(8\cdot\frac{1}{4}-8\cdot\frac{1}{2}+m^2+1=0\)
=> 2 - 4 + m2 + 1 = 0 \(\Leftrightarrow\)m2-1=0 \(\Leftrightarrow\)m2 = 1 \(\Leftrightarrow\)m= \(\pm1\)
Vậy với m = \(\pm1\)thì x có nghiệm duy nhất là x = \(\frac{1}{2}\)
Không có tồn tại thời 1802 - 1045 nào cả bn
#Học tốt#