Cho (O; R) đường kính AB. M thuộc (O); (M khác A; B, MA < MB) . Trên tia MB lấy N sao cho MA = MN. Dựng hình vuông AMNP. Kéo dài MP cắt (O) ở C (C khác M ).
1) Chứng minh rằng tam giác ABC vuông cân.
2) Gọi I là tâm đường tròn nội tiếp tam giác AMB . Chứng minh rằng tứ giác AINB nội tiếp.
3) Chứng minh rằng tam giác BNC cân. Tính bán kính đường tròn ngoại tiếp AINB theo R .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mk không biết tải hình lên, xin lỗi bn nhé.
a) Do AB là đường kính của (O) nên
\(\Rightarrow\widehat{ACB}=\widehat{ADB}=90^0\)
Xét tứ giác CEDF có : \(\widehat{ECF}+\widehat{EDF}=180^0\)
\(\Rightarrow ECDF\)là tứ giác nội tiếp (ĐPCM)
b) Do \(\widehat{ECF}=\widehat{EDF}=90^0\)nên ECDF nội tiếp đường tròn đường kính EF
Hay ECDF nội tiếp (I;IE) nên
\(\widehat{IDF}=\widehat{IFD}=\widehat{ECD}=\frac{1}{2}sđ\widebat{BD}=\widehat{OAD}=\widehat{ODA}\)
Từ đó ta có: \(\widehat{IDO}=\widehat{IDE}+\widehat{OAD}=\widehat{IDE}+\widehat{IDF}=90^0\)
\(\Rightarrow\)ID là tiếp tuyến của đường tròn (O) (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)
\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)
\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)
Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm
\(\Rightarrow\Delta^'_x\ge0\)
\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+4A+2\ge0\)
\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)
Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)
Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được
Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : m=0 thay vào (d) được :
y = f(x) = (2*0-1)x+1 = -x+1
Vì hệ số a = -1<0 nên hàm nghịch biến
Mà √3 -√2 > √6 - √5 =>f(√3 -√2) < f(√6 - √5)
1,
Tam giác ABC có CA=CB và ACB=90 => ACB vuông cân