K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

khó quá bạn ơi 

16 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(P=\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\)

\(\Leftrightarrow P=\left(\frac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(x-\sqrt{x}+2\right)-x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\frac{x\sqrt{x}-x+2\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\frac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\frac{-2}{\sqrt{x}+1}\)

Bạn tự thay x vào rồi tính P nhé !

23 tháng 3 2020

Ta có: M có 2 trường hợp là M=0 hoặc bằng 1

TH1: M= 0

Ta có: \(\frac{3\sqrt{x}}{\sqrt{x}-3}=0\)

\(\Leftrightarrow3\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\)

TH2: M = 1

Ta có:\(1=\frac{3\sqrt{x}}{\sqrt{x-3}}\)

Nhân 2 vế với \(\sqrt{x}-3\), ta có: \(\sqrt{x}-3=3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=3\)

\(\Leftrightarrow-2\sqrt{x}=3\)

Đổi dấu cả 2 vế, ta có:\(2\sqrt{x}=-3\)

Vì  \(2\sqrt{x}\)luôn lớn hơn hoặc bằng 0 nên phương trình này vô nghiệm.

Vậy x phải bằng 0

23 tháng 3 2020

gọi x là số sản phẩm làm 1 ngày theo dự định
3200/x là số ngày làm 3200 sp theo dự định
5+(3200-5x)/(x+40) là số ngày làm xong sản phẩm thực tê
ta có pt
3200/x-3=(5+(3200-5x)/(x+40))

23 tháng 3 2020

xong chị giải pt ra là đc

22 tháng 3 2020

\(\hept{\begin{cases}mx-y=1\\my-x=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=mx-1\\m\left(mx-1\right)-x=m\end{cases}\Leftrightarrow}\hept{\begin{cases}y=mx-1\\m^2x-m-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=mx-1\\x=\frac{2m}{m^2-1}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2m^2-m^2+1}{m^2-1}\\x=\frac{2m}{m^2-1}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{m^2+2}{m^2-1}\\x=\frac{2m}{m^2-1}\end{cases}}}\)

Để hệ phương trình có nghiệm duy nhất thì m\(\ne\pm1\)

18 tháng 3 2020

2 danh từ được dùng như tính từ: rất Việt Nam, rất phương Đông.

22 tháng 3 2020

Giải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:

Bài 1:

a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC

→AD→AD là phân giác ˆBACBAC^

b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC

Lại có :

MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^

ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^

→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC

c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC

→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp

→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^

(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)

ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hà

19 tháng 3 2020

Gọi phương trình đường thẳng đi qua hai điểm A và B là: y = ax + by = ax+b. A thuộc đường thẳng y = ax + by = ax+b nên: 0.a + b = 2 ⇔ b = 2 0.a+b = 2⇔b = 2. B thuộc đường thẳng y = a x + b y=ax+b nên: ( − 3 ) a + b = 4 (−3)a+b=4 ⇔ a = 4 − b − 3 ⇔a=4−b−3 = 4 − 2 − 3 = − 2 3 =4−2−3=−23. Vậy phương trình đường thẳng AB là: y = − 2 3 x + 2 y=−23x+2. Do − 2 3 .6 + 2 = − 2 −23.6+2=−2 nên C thuộc đường thẳng AB hay A, B, C thẳng hàng.

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.