K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

$2x\equiv 9\pmod {11}\Rightarrow 2x=11k+9$ với $k$ tự nhiên.

Do $2x$ chẵn nên $11k$ lẻ nên $k$ lẻ.

$x$ là số có 3 chữ số

$\Rightarrow 2x=11k+9\geq 200$

$\Rightarrow k\geq \frac{191}{11}=17,36....$

$\Rightarrow k$ nhỏ nhất bằng $19$ (do $k$ lẻ)

$\Rightarrow x$ nhỏ nhất là: $(11.19+9):2=109$

9 tháng 10 2023

Đặt \(P=\sqrt{21-2x}+\sqrt{2x-3}\)

\(\Rightarrow P^2=\left(1.\sqrt{21-2x}+1.\sqrt{2x-3}\right)^2\)

\(\le\left(1^2+1^2\right)\left[\left(\sqrt{21-2x}\right)^2+\left(\sqrt{2x-3}\right)^2\right]\)

\(=2.18=36\)

\(\Rightarrow P\le6\)

Dấu "=" xảy ra khi \(21-2x=2x-3\Leftrightarrow x=6\)

Vậy GTLN của biểu thức đã cho là 6.

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{21-2x}+\sqrt{2x-3})^2\leq (21-2x+2x-3)(1+1)=36$

$\Rightarrow \sqrt{21-2x}+\sqrt{2x-3}\leq 6$

Vậy GTLN của biểu thức là $6$. Giá trị này đạt được khi:

$21-2x=2x-3\Leftrightarrow x=6$

 

9 tháng 10 2023

f(x) = (x² - bx)(2x + b)

= 2x³ + bx² - 2bx² - b²x

= 2x³ - bx² - b²x

Do hệ số của x² là 5

⇒ -b = 5

⇒ b = -5

f(x) = 2x³ + 5x² - 25x

f(1) = 2.1³ + 5.1² - 25.1

= -18

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

$(2x^2-y^2)+xy-(2x-y)=(2x^2+xy-y^2)-(2x-y)$

$=[(2x^2-xy)+(2xy-y^2)]-(2x-y)=[x(2x-y)+y(2x-y)]-(2x-y)$

$=(2x-y)(x+y)-(2x-y)=(2x-y)(x+y-1)$

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:

Nếu .... là vô hạn thì:

$M=\sqrt{15-2M}$

$\Rightarrow M^2=15-2M$

$\Leftrightarrow M^2+2M-15=0$

$\Leftrightarrow (M-3)(M+5)=0$

$\Leftrightarrow M=3$ (do $M>0$)

8 tháng 10 2023

Từ dữ kiện thứ hai, ta thấy 4 số có cùng số dư khi chia cho 3 nên tổng nhỏ nhất là \(1+7+13+19=40\) (giữ lại đáp án ban đầu nhé)

8 tháng 10 2023

 Từ dữ kiện thứ nhất ta thấy hoặc cả 4 số đều lẻ, hoặc cả 4 số đều chẵn.

 Từ dữ kiện thứ 2 ta thấy cả 4 số đều phải chia hết cho 3.

 Suy ra tổng nhỏ nhất của 4 số là \(1+7+13+19=40\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:

Nếu $p$ chẵn thì $p=2$. Khi đó $a^3=2.2+1=5$ (vô lý- loại)

Nếu $p$ lẻ thì:

$a^3=2p+1$
$a^3-1=2p$

$(a-1)(a^2+a+1)=2p$

Vì $a^3=2p+1$ lẻ nên $a$ lẻ. Do đó $a-1$ chẵn. 

Mà $a^2+a+1=a(a+1)+1$ có $a(a+1)$ chẵn nên $a^2+a+1=a(a+1)+1$ lẻ.

Do đó ta có 2 TH sau:

TH1: $a-1=2, a^2+a+1=p$

$\Rightarrow a=3; p=13$ (tm) 

TH2: $a-1=2p, a^2+a+1=1$

$\Rightarrow a(a+1)=0\Rightarrow a=0$

$\Rightarrow 2p+1=a=0$ (vô lý) - loại

Vâ $a=3; p=13$

8 tháng 10 2023

Bài 1.

\(a\Big) 9(4x+3)^2=16(3x-5)^2\\\Leftrightarrow 9[(4x)^2+2\cdot 4x\cdot3+3^2]=16[(3x)^2-2\cdot3x\cdot5+5^2]\\\Leftrightarrow9(16x^2+24x+9)=16(9x^2-30x+25)\\\Leftrightarrow 144x^2+216x+81=144x^2-480x+400\\\Leftrightarrow (144x^2-144x^2)+(216x+480x)=400-81\\\Leftrightarrow 696x=319\\\Leftrightarrow x=\dfrac{11}{24}\\Vậy:x=\dfrac{11}{24}\\---\)

\(b\Big)(x-3)^2=4x^2-20x+25\\\Leftrightarrow(x-3)^2=(2x)^2-2\cdot2x\cdot5+5^2\\\Leftrightarrow(x-3)^2=(2x-5)^2\\\Leftrightarrow (x-3)^2-(2x-5)^2=0\\\Leftrightarrow (x-3-2x+5)(x-3+2x-5)=0\\\Leftrightarrow (-x+2)(3x-8)=0\\\Leftrightarrow \left[\begin{array}{} -x+2=0\\ 3x-8=0 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} -x=-2\\ 3x=8 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} x=2\\ x=\dfrac{8}{3} \end{array} \right.\\Vậy:...\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:

$C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^8-1)(5^8+1)(5^{16}+1)=(5^{16}-1)(5^{16}+1)$
$=5^{32}-1$